De novo galectin-3 expression influences the response of melanoma cells to isatin-Schiff base copper (II) complex-induced oxidative stimulus

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
BORGES, Beatriz E.
TEIXEIRA, Veronica R.
APPEL, Marcia H.
STECLAN, Chelin A.
RIGO, Fernanda
NETO, Francisco Filipak
FERREIRA, Ana M. da Costa
ZANATA, Silvio M.
NAKAO, Lia S.
Citação
CHEMICO-BIOLOGICAL INTERACTIONS, v.206, n.1, p.37-46, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Galectin-3, a ubiquitous member of the galectin family, has been shown to control cellular proliferation, adhesion, migration and apoptosis; thus, it has.a role in tumor development and progression. Galectin-3 expression is both up- and down-regulated during melanoma progression. However, conflicting data regarding its roles in tumor biology prompted us to investigate if the presence of galectin-3 influences the response of melanoma cells to a novel metallodrug because metastatic melanoma acquires chemo resistance and is reported to be redox-sensitive. Previously, it was demonstrated that the complex [bis-(2-oxindo1-3-yl-imino)-2-(2-aminoethyl) pyridine-N,N'] copper (II) perchlorate, herein referred to as [Cu(isaepy)], induces ROS formation and apoptosis in neuroblastoma cells through mitochondrial uncoupling and the activation of AMPK/p38/p53 signaling. Here, we used a model of vertical growth melanoma (TM1), in which GAL3 expression is lost during tumor progression. When de novo expressed, galectin-3 was found to be ubiquitously present in all subcellular compartments. Our results demonstrate that de novo galectin-3 expression impairs the cellular antioxidant system and renders TM1G3 cells more susceptible than GAL3-null TM1MNG3 cells to [Cu(isaepy)] treatment. This compound, in contrast with the redox inactive [dichloro (2-oxindo1-3-yl-imino)-2-(2-aminoethyl) pyridine-N,N1 zinc (II), herein referred to as [Zn(isaepy)], leads to increased intracellular ROS accumulation, increased carbonyl stress, increased mitochondrial depolarization, decreased cell adhesion, increased p38 activation and apoptosis in TM1G3, compared with TM1MNG3. Cell death was shown to be dependent on a hydrogen peroxide-derived species and on the activation of p38. Because mitochondria are a target of both [Cu(isaepy)] and galectin-3, we propose that the presence of galectin-3 in this organelle favors increased ROS production, thereby inducing oxidative cellular damage and apoptotic death. Therefore, [Cu(isaepy)] may be envisaged as a possible anti-melanoma strategy, particularly for melanomas that express galectin-3.
Palavras-chave
Galectin-3, Melanoma cells, Copper, Metal complex
Referências
  1. AEBI H, 1984, METHOD ENZYMOL, V105, P121
  2. Akahani S, 1997, CANCER RES, V57, P5272
  3. Alves CMOS, 2013, PARASITOLOGY, V140, P210, DOI 10.1017/S0031182012001473
  4. BAKER MA, 1990, ANAL BIOCHEM, V190, P360, DOI 10.1016/0003-2697(90)90208-Q
  5. Brown ER, 2012, EUR J CANCER, V48, P865, DOI 10.1016/j.ejca.2011.09.003
  6. Castronovo V, 1996, J PATHOL, V179, P43, DOI 10.1002/(SICI)1096-9896(199605)179:1<43::AID-PATH541>3.0.CO;2-N
  7. Castronovo V, 1999, INT J ONCOL, V15, P67
  8. Cen DZ, 2004, J MED CHEM, V47, P6914, DOI 10.1021/jm049568z
  9. Cerchiaro G, 2005, J INORG BIOCHEM, V99, P1433, DOI 10.1016/j.jinorgbio.2005.03.013
  10. Chun J, 2013, J CELL BIOCHEM, V114, P456, DOI 10.1002/jcb.24386
  11. CROUCH RK, 1981, DIABETES, V30, P235
  12. da Silveira VC, 2008, J INORG BIOCHEM, V102, P1090, DOI 10.1016/j.jinorgbio.2007.12.033
  13. de Souza GA, 2006, PROTEOMICS, V6, P1460, DOI 10.1002/pmic.200500243
  14. Dumic J, 2006, BBA-GEN SUBJECTS, V1760, P616, DOI 10.1016/j.bbagen.2005.12.020
  15. Ellerhorst J, 1999, UROL RES, V27, P362
  16. ENGVALL E, 1977, INT J CANCER, V20, P1, DOI 10.1002/ijc.2910200102
  17. Fernandes Bertocchi A.P., 2008, TRANSPLANT INT, V21, P999
  18. Filomeni G, 2007, J BIOL CHEM, V282, P12010, DOI 10.1074/jbc.M610927200
  19. Filomeni G, 2011, BIOCHEM J, V437, P443, DOI 10.1042/BJ20110510
  20. Filomeni G, 2009, CARCINOGENESIS, V30, P1115, DOI 10.1093/carcin/bgp105
  21. Fruehauf JP, 1997, PIGM CELL RES, V10, P236, DOI 10.1111/j.1600-0749.1997.tb00490.x
  22. Fukumori T, 2003, CANCER RES, V63, P8302
  23. Hsu DK, 1999, INT J CANCER, V81, P519, DOI 10.1002/(SICI)1097-0215(19990517)81:4<519::AID-IJC3>3.0.CO;2-0
  24. Jungwirth U., 2012, ANTIOXID REDOX SIGN, V15, P1085
  25. Kapucuoglu N, 2009, PATHOL RES PRACT, V205, P97, DOI 10.1016/j.prp.2008.09.001
  26. Keen H., 1976, J BIOL CHEM, V251, P6183
  27. Kim DW, 2008, CANCER SCI, V99, P1884, DOI 10.1111/j.1349-7006.2008.00901.x
  28. Kim HRC, 1999, CANCER RES, V59, P4148
  29. Knapp JS, 2013, WORLD J UROL, V31, P351, DOI 10.1007/s00345-012-0925-y
  30. Kuphal S, 2009, J PATHOL, V219, P400, DOI 10.1002/path.2617
  31. Lacy KE, 2012, CLIN MED, V12, P168
  32. Lane ME, 2001, CANCER RES, V61, P6170
  33. Larsen L, 2011, J DERMATOL SCI, V64, P85, DOI 10.1016/j.jdermsci.2011.07.008
  34. Li JM, 2002, J BIOL CHEM, V277, P19952, DOI 10.1074/jbc.M110073200
  35. Liu FT, 2005, NAT REV CANCER, V5, P29, DOI 10.1038/nrc1527
  36. Manfredi G, 2002, METHODS, V26, P317, DOI 10.1016/S1046-2023(02)00037-3
  37. Matarrese P, 2000, FEBS LETT, V473, P311, DOI 10.1016/S0014-5793(00)01547-7
  38. Naliwaiko K, 2008, CHEM-BIOL INTERACT, V173, P122, DOI 10.1016/j.cbi.2008.03.010
  39. Newlaczyl AU, 2011, CANCER LETT, V313, P123, DOI 10.1016/j.canlet.2011.09.003
  40. Nikolaou VA, 2012, J INVEST DERMATOL, V132, P854, DOI 10.1038/jid.2011.421
  41. Oba-Shinjo SM, 2006, NEOPLASIA, V8, P231, DOI 10.1593/neo.05781
  42. PAULSSON M, 1987, EUR J BIOCHEM, V166, P11, DOI 10.1111/j.1432-1033.1987.tb13476.x
  43. Prieto VG, 2006, CLIN CANCER RES, V12, P6709, DOI 10.1158/1078-0432.CCR-06-0758
  44. Saussez S, 2008, ORAL ONCOL, V44, P86, DOI 10.1016/j.oraloncology.2006.12.014
  45. SCHOEPPNER HL, 1995, CANCER, V75, P2818, DOI 10.1002/1097-0142(19950615)75:12<2818::AID-CNCR2820751206>3.0.CO;2-#
  46. Scott DA, 2011, J BIOL CHEM, V286, P42626, DOI 10.1074/jbc.M111.282046
  47. Sharma P, 2004, J LEUKOCYTE BIOL, V75, P1070, DOI 10.1189/jlb.0903415
  48. SHINAR E, 1983, J BIOL CHEM, V258, P4778
  49. Spagnolo F, 2012, ARCH DERMATOL RES, V304, P177, DOI 10.1007/s00403-012-1223-7
  50. Suzuki Y, 2008, BBA-MOL CELL RES, V1783, P924, DOI 10.1016/j.bbamcr.2008.01.025
  51. Taniguchi N., 2000, EXPT PROTOCOLS REACT
  52. Trapp V, 2009, MELANOMA RES, V19, P350, DOI 10.1097/CMR.0b013e32832c6324
  53. Vereecken P, 2005, ARCH DERMATOL RES, V296, P353, DOI 10.1007/s00403-004-0536-6
  54. Wang Y., 2012, ONCOGENE, DOI 10.1038/0NC.2012.528
  55. Wittgen HGM, 2007, MELANOMA RES, V17, P400
  56. WOO HJ, 1991, J BIOL CHEM, V266, P18419
  57. Yamaki S., 2012, SURG TODAY, V43, P901
  58. Yang RY, 1996, P NATL ACAD SCI USA, V93, P6737, DOI 10.1073/pnas.93.13.6737
  59. YATOHGO T, 1988, CELL STRUCT FUNCT, V13, P281, DOI 10.1247/csf1975.13.281