Airway Growth in Preoperative Patients with Crouzon Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Autores
LU, Xiaona
FORTE, Antonio Jorge
PARK, Kitae Eric
ALLAM, Omar
SMETONA, John
ALPEROVICH, Michael
STEINBACHER, Derek M.
TONELLO, Cristiano
PERSING, John A.
Citação
FACIAL PLASTIC SURGERY & AESTHETIC MEDICINE, v.23, n.3, p.191-197, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Obstructive sleep apnea is common in patients with Crouzon syndrome, yet it may be caused by multiple factors. This study aims to investigate the natural history of airway development in preoperative Crouzon patients, from infants to adults. Methods: Preoperative computed tomography (CT) scans (Crouzon syndrome, n = 73; control, n = 87) were divided into five age subgroups. CT scans were measured using Materialise software. Results: Before 6 months of age, nasal airway volume in patients with Crouzon syndrome was smaller than normal by 37% (p = 0.002), and the cross-sectional area at the choana reduced by 45% (p < 0.001). The reduction of nasal airway volume and cross-sectional area reached their nadir at 2 years of age, with shortening of 44% and 63% (both p < 0.001), respectively. They gradually caught up to normal dimensions after 6 years of age. Between 2 and 6 years, the pharyngeal airway in patients with Crouzon syndrome reduced 44% (p = 0.011) compared with controls. However, the airway cross-sectional area at condylion and gonion levels was less than normal, before 6 months (35%, p = 0.024) and (44%, p = 0.006) after 2 years of age, respectively. This reduction remains into adulthood. Conclusion: Nasal airway volume is more limited in children with Crouzon syndrome who are younger than 2 years of age. Whereas after 2 years of age, the pharyngeal airway develops significant volume restriction, leading to timing and specific treatment area foci based on the site of temporal maximal constriction.
Palavras-chave
Referências
  1. Abu-Sittah GS, 2016, J NEUROSURG-PEDIATR, V17, P469, DOI 10.3171/2015.6.PEDS15177
  2. Ahmad F, 2012, PLAST RECONSTR SURG, V129, p488E, DOI 10.1097/PRS.0b013e3182412820
  3. COCCARO PJ, 1980, AM J ORTHOD DENTOFAC, V77, P421, DOI 10.1016/0002-9416(80)90107-4
  4. DePonte F, 1999, J CRANIOFAC SURG, V10, P430, DOI 10.1097/00001665-199909000-00008
  5. Engel M, 2019, J CRANIO MAXILL SURG, V47, P420, DOI 10.1016/j.jcms.2018.11.028
  6. Ettinger RE, 2011, PLAST RECONSTR SURG, V127, P1612, DOI 10.1097/PRS.0b013e318208d2de
  7. Fearon JA, 2005, PLAST RECONSTR SURG, V115, P1524, DOI 10.1097/01.PRS.0000160271.08827.15
  8. Flores RL, 2009, PLAST RECONSTR SURG, V124, P590, DOI 10.1097/PRS.0b013e3181b0fba9
  9. Forte AJ, 2019, PLAST RECONSTR SURG, V144, P704, DOI 10.1097/PRS.0000000000005937
  10. Forte AJ, 2019, ANN PLAS SURG, V82, P686, DOI 10.1097/SAP.0000000000001740
  11. Gibson TL, 2019, AM J ORTHOD DENTOFAC, V156, P779, DOI 10.1016/j.ajodo.2018.12.022
  12. Gonsalez S, 1997, EUR RESPIR J, V10, P367, DOI 10.1183/09031936.97.10020367
  13. Hayward R, 2005, J NEUROSURG, V102, P16, DOI 10.3171/ped.2005.102.1.0016
  14. Hoeve LJH, 2003, INT J PEDIATR OTORHI, V67, pS111, DOI 10.1016/j.ijporl.2003.08.007
  15. Hopper RA, 2010, PLAST RECONSTR SURG, V126, P1666, DOI 10.1097/PRS.0b013e3181eff362
  16. Hui S, 1998, SLEEP, V21, P298
  17. KABAN LB, 1984, PLAST RECONSTR SURG, V73, P758, DOI 10.1097/00006534-198405000-00007
  18. Kim SC, 2018, ANN PLAS SURG, V80, P359, DOI 10.1097/SAP.0000000000001318
  19. Kreiborg S, 1986, Cleft Palate J, V23 Suppl 1, P78
  20. Kreiborg S, 1981, Scand J Plast Reconstr Surg Suppl, V18, P1
  21. Lu X, 2021, Br J Oral Maxillofac Surg, V59, P592, DOI 10.1016/j.bjoms.2020.10.008
  22. Lu XN, 2019, J CRANIO MAXILL SURG, V47, P1426, DOI 10.1016/j.jcms.2019.06.003
  23. Luna-Paredes C, 2012, INT J PEDIATR OTORHI, V76, P1767, DOI 10.1016/j.ijporl.2012.08.020
  24. MARCHAC D, 1987, CLIN PLAST SURG, V14, P61
  25. Mathijssen I, 2006, J CRANIOFAC SURG, V17, P642, DOI 10.1097/00001665-200607000-00006
  26. MCCARTHY JG, 1990, PLAST RECONSTR SURG, V86, P633, DOI 10.1097/00006534-199010000-00003
  27. MOORE MH, 1993, BRIT J PLAST SURG, V46, P355, DOI 10.1016/0007-1226(93)90039-E
  28. MULLIKEN JB, 1986, PLAST RECONSTR SURG, V77, P7
  29. Nout E, 2012, J CRANIO MAXILL SURG, V40, P209, DOI 10.1016/j.jcms.2011.04.017
  30. Nout E, 2010, PLAST RECONSTR SURG, V126, P564, DOI 10.1097/PRS.0b013e3181de227f
  31. Patel N, 2015, PLAST RECONSTR SURG, V135, p731E, DOI 10.1097/PRS.0000000000001062
  32. Patel PA, 2017, PLAST RECONSTR SURG, V140, p794E, DOI 10.1097/PRS.0000000000003879
  33. Pijpers M, 2004, J CRANIOFAC SURG, V15, P670, DOI 10.1097/00001665-200407000-00026
  34. Schendel SA, 2014, AM J ORTHOD DENTOFAC, V146, P385, DOI 10.1016/j.ajodo.2014.01.026
  35. Spruijt B, 2016, PLAST RECONSTR SURG, V138, p1019E, DOI 10.1097/PRS.0000000000002741
  36. Warren SM, 2012, PLAST RECONSTR SURG, V129, P234, DOI 10.1097/PRS.0b013e3182362a2f