SARS-CoV-2 infection, gut dysbiosis, and heterogeneous clinical results of hydroxychloroquine on COVID-19 therapy & mdash;Is there a link?

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
NUTRITION, v.85, article ID 111115, 3p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Clinical manifestations of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can include gastrointestinal signals and symptoms. Individuals with previous clinical conditions that usually enroll gut dysbiosis have been identified as being at high risk to develop more severe infectious phenotypes. Actually, intestinal dysbiosis has been observed in infected patients and potentially linked to systemic hyper-inflammation. These observations suggest that a previous gut dysbiosis may be aggravated by SARS-CoV-2 infection and related to progression of the coronavirus disease 2019 (COVID-19) into more severe stages. While COVID-19 & rsquo;s pathophysiology is not fully understood, it seems relevant to consider the interactions of candidate therapeutic drugs with the host, gut microbiota, and SARS-CoV-2. Here we summarize scientific evidence supporting the potential relevance of these interactions and suggest that unfavorable clinical data on hydroxychloroquine administration in COVID-19 may have been influenced by the dose provided and its impact on gut dysbiosis. The proposition is based on preliminary data on gut microbiota composition from individuals with inactive systemic lupus erythematosus under exclusive continuous hydroxychloroquine treatment, displaying a direct correlation between drug doses and markers typically associated with gut dys-biosis.
Palavras-chave
SARS-CoV-2, Gut microbiota, Gut dysbiosis, Hydroxychloroquine, COVID-19, Antimalarials
Referências
  1. Belizario Jose E, 2018, Exp Suppl, V109, P459, DOI 10.1007/978-3-319-74932-7_13
  2. Bello MGD, 2018, SCIENCE, V362, P33, DOI 10.1126/science.aau8816
  3. Borba MGS, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.8857
  4. Bradley KC, 2019, CELL REP, V28, P245, DOI 10.1016/j.celrep.2019.05.105
  5. Browning DJ, 2014, HYDROXYCHLOROQUINE C, P35, DOI [10.1007/978-1-4939-0597-3_2, DOI 10.1007/978-1-4939-0597-3_2]
  6. Budden KF, 2017, NAT REV MICROBIOL, V15, P55, DOI 10.1038/nrmicro.2016.142
  7. Cani PD, 2008, DIABETES, V57, P1470, DOI 10.2337/db07-1403
  8. Cani PD, 2018, GUT, V67, P1716, DOI 10.1136/gutjnl-2018-316723
  9. Chen Z, 2020, EFFICACY HYDROXYCHLO, DOI [10.1101/2020.03.22.20040758, DOI 10.1101/2020.03.22.20040758]
  10. Falony G, 2018, NAT MICROBIOL, V3, P526, DOI 10.1038/s41564-018-0143-5
  11. Gao QY, 2020, J DIGEST DIS, V21, P125, DOI 10.1111/1751-2980.12851
  12. Gautret P, 2020, INT J ANTIMICROB AG, V56, DOI 10.1016/j.ijantimicag.2020.105949
  13. Gou W., 2020, GUT MICROBIOTA MAY U, DOI [10.1101/2020.04.22.20076091, DOI 10.1101/2020.04.22.20076091]
  14. Groves HT, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00182
  15. Ianiro G, 2020, LANCET GASTROENTEROL, V5, P430, DOI 10.1016/S2468-1253(20)30082-0
  16. Keebaugh ES, 2017, CELL HOST MICROBE, V21, P417, DOI 10.1016/j.chom.2017.03.013
  17. Li Q, 2020, NEW ENGL J MED, V382, P1199, DOI 10.1056/NEJMoa2001316
  18. Lu RJ, 2020, LANCET, V395, P565, DOI 10.1016/S0140-6736(20)30251-8
  19. McAleer JP, 2018, EUR J IMMUNOL, V48, P39, DOI 10.1002/eji.201646721
  20. Nehring SM, 2020, C REACTIVE PROTEIN
  21. Nobel YR, 2020, GASTROENTEROLOGY, V159, P373, DOI 10.1053/j.gastro.2020.04.017
  22. Pan L, 2020, AM J GASTROENTEROL, V115, P766, DOI 10.14309/ajg.0000000000000620
  23. Pan ZY, 2021, LIFE SCI, V264, DOI 10.1016/j.lfs.2020.118450
  24. Rius B, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00257
  25. Ruiz-Irastorza G, 2010, ANN RHEUM DIS, V69, P20, DOI 10.1136/ard.2008.101766
  26. Savarino A, 2003, LANCET INFECT DIS, V3, P722, DOI 10.1016/S1473-3099(03)00806-5
  27. Shanahan F, 2017, GUT, V66, P1709, DOI 10.1136/gutjnl-2017-313872
  28. Shi Na, 2019, Animal Model Exp Med, V2, P98, DOI 10.1002/ame2.12065
  29. Steed AL, 2017, SCIENCE, V357, P498, DOI 10.1126/science.aam5336
  30. Tang W, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1849
  31. Torrinhas RS, 2021, NUTRITION, V81, DOI 10.1016/j.nut.2020.110900
  32. Viennois E, 2019, CELL MOL GASTROENTER, V8, P61, DOI 10.1016/j.jcmgh.2019.02.008
  33. Wei XS, 2020, CLIN GASTROENTEROL H, V18, P1753, DOI 10.1016/j.cgh.2020.04.030
  34. World Health Organization, WHO DISC HYDR LOP NA
  35. Xu Kaijin, 2020, Zhejiang Da Xue Xue Bao Yi Xue Ban, V49, P147, DOI 10.3785/j.issn.1008-9292.2020.02.02
  36. Yildiz S, 2018, MICROBIOME, V6, DOI 10.1186/s40168-017-0386-z
  37. Zhang T, 2019, MICROB BIOTECHNOL, V12, P1109, DOI 10.1111/1751-7915.13410