Monocyte-Derived Dendritic Cells Can Revert In Vitro Antigen-Specific Cellular Anergy in Active Human Paracoccidioidomycosis

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
PASSOS, Erika Cano
MIRANDA, Tatiana Giselle Rodrigues
SADAHIRO, Aya
ALMEIDA, Sandro Rogerio de
Citação
JOURNAL OF FUNGI, v.7, n.3, article ID 201, 16p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We investigated the in vitro effects of two Paracoccidioides brasiliensis antigens on monocyte-derived dendritic cells (moDCs) from patients with paracoccidioidomycosis (PCM). MoDCs from patients with active or treated PCM and non-PCM subjects were generated, stimulated with TNF-alpha, and P. brasiliensis antigens, 43 kDa glycoprotein (gp43) and cell-free antigen (CFA), and analyzed by flow cytometry and enzyme-linked immunosorbent assays (ELISA). Our data revealed that patients with PCM had a high frequency of HLA-DR+ cells, but the treated group had more CD86(+) cells with increased IL-12p40. Patients with active PCM had more CD80(+) moDCs, and as a novel finding, large amounts of chemokine (C-C motif) ligand 18 (CCL18) in the supernatants from their in vitro moDC cultures. Both gp43- and CFA-stimulated moDCs from the patients with PCM successfully reverted the in vitro antigen-specific anergy, inducing a proliferative response. However, CFA-stimulated moDCs led to higher lymphoproliferation, with increased IFN-gamma and TNF-alpha in the cells from the patients with active PCM compared with gp43. These original results combined with constant IL-10 and increased IL-12p40 levels suggest that a more complex antigen, such as CFA, may be a better inducer of the protective Th1 immune response than purified gp43 is, and a suitable target for future studies on anti-P. brasiliensis dendritic cell (DC)-based vaccines.
Palavras-chave
Paracoccidioides brasiliensis, paracoccidioidomycosis, dendritic cells, cytokines, coculture, gp43, cell-free antigen
Referências
  1. Almeida SR, 2001, BRAZ J MED BIOL RES, V34, P529, DOI 10.1590/S0100-879X2001000400014
  2. Amorim BC, 2020, MICROBES INFECT, V22, P137, DOI 10.1016/j.micinf.2019.11.001
  3. Arruda C, 2004, INFECT IMMUN, V72, P3932, DOI 10.1128/IAI.72.7.3932-3940.2004
  4. Arruda C, 2002, CLIN IMMUNOL, V103, P185, DOI 10.1006/clim.2002.5207
  5. Banchereau J, 1998, NATURE, V392, P245, DOI 10.1038/32588
  6. Benard G, 1997, J INFECT DIS, V175, P1263, DOI 10.1086/593694
  7. Benard G, 2001, CYTOKINE, V13, P248, DOI 10.1006/cyto.2000.0824
  8. Bocca AL, 2013, FUTURE MICROBIOL, V8, P1177, DOI 10.2217/fmb.13.68
  9. Bosco MC, 2006, J IMMUNOL, V177, P1941, DOI 10.4049/jimmunol.177.3.1941
  10. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  11. Bruna-Romero O, 2003, J IMMUNOL, V170, P3195, DOI 10.4049/jimmunol.170.6.3195
  12. Calich VLG, 2019, VIRULENCE, V10, P810, DOI 10.1080/21505594.2018.1483674
  13. CALICH VLG, 1985, BRIT J EXP PATHOL, V66, P585
  14. CAMARGO ZP, 1991, J MED VET MYCOL, V29, P31
  15. Cavassani KA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021423
  16. Coady A, 2015, INFECT IMMUN, V83, P1265, DOI 10.1128/IAI.02619-14
  17. Costa TA, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002512
  18. Coutinho ZF, 2015, TROP MED INT HEALTH, V20, P673, DOI 10.1111/tmi.12472
  19. Czakai K, 2017, INT J MED MICROBIOL, V307, P95, DOI 10.1016/j.ijmm.2016.11.010
  20. da Silva RP, 2015, SCI REP-UK, V5, DOI 10.1038/srep14213
  21. de Araujo EF, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-68322-6
  22. de Castro LF, 2018, J INFECTION, V77, P137, DOI 10.1016/j.jinf.2018.03.004
  23. de Castro LF, 2013, J INFECTION, V67, P470, DOI 10.1016/j.jinf.2013.07.019
  24. DECAMARGO ZP, 1988, J CLIN MICROBIOL, V26, P2147, DOI 10.1128/JCM.26.10.2147-2151.1988
  25. Fernandes RK, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120948
  26. da Silva WLF, 2016, MED MYCOL, V54, P370, DOI 10.1093/mmy/myv112
  27. Ferreira KS, 2006, IMMUNOL LETT, V103, P121, DOI 10.1016/j.imlet.2005.10.014
  28. Ferreira KS, 2004, IMMUNOL LETT, V94, P107, DOI 10.1016/j.imlet.2004.04.005
  29. Franco M.F, 1994, PARACOCCIDIOIDOMYCOS
  30. GIMENEZ MF, 1987, ARCH DERMATOL, V123, P479, DOI 10.1001/archderm.123.4.479
  31. Hector A, 2014, EUR RESPIR J, V44, P1608, DOI 10.1183/09031936.00070014
  32. Jannuzzi GP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129401
  33. Karhawi ASK, 2000, MED MYCOL, V38, P225, DOI 10.1080/714030939
  34. Kashino SS, 2000, J INTERF CYTOK RES, V20, P89, DOI 10.1089/107999000312766
  35. Korbecki J, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21217955
  36. Kusano F, 2000, LAB INVEST, V80, P415, DOI 10.1038/labinvest.3780046
  37. LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
  38. Livonesi MC, 2008, MED MYCOL, V46, P637, DOI 10.1080/13693780801982762
  39. Long QX, 2020, NAT MED, V26, P845, DOI [10.1038/s41591-020-0897-1, 10.1038/s41591-020-0965-6]
  40. Lopera D, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001232
  41. Marchant A, 2001, AM J RESP CELL MOL, V24, P187, DOI 10.1165/ajrcmb.24.2.4274
  42. Tristao FSM, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00949
  43. Mello LM, 2002, HUM IMMUNOL, V63, P149, DOI 10.1016/S0198-8859(01)00375-5
  44. Mendez A, 2011, TUBERCULOSIS, V91, P140, DOI 10.1016/j.tube.2010.12.008
  45. Morton CO, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098279
  46. Nakahara T, 2005, CLIN EXP IMMUNOL, V139, P476, DOI 10.1111/j.1365-2249.2004.02709.x
  47. Oliveira SJ, 2002, MICROBES INFECT, V4, P139, DOI 10.1016/S1286-4579(01)01521-0
  48. Souza ACO, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.02445
  49. Pagliari C, 2002, MED MYCOL, V40, P407, DOI 10.1080/mmy.40.4.407.410
  50. Pagliari C, 2014, MED MYCOL, V52, P397, DOI 10.1093/mmy/myt026
  51. Panunto-Castelo A, 2003, MICROBES INFECT, V5, P1205, DOI 10.1016/j.micinf.2003.07.008
  52. Preite NW, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00464
  53. Rademacher J, 2016, J RHEUMATOL, V43, P587, DOI 10.3899/jrheum.150474
  54. Richards JO, 2002, J IMMUNOL, V169, P2020, DOI 10.4049/jimmunol.169.4.2020
  55. ROMANI N, 1994, J EXP MED, V180, P83, DOI 10.1084/jem.180.1.83
  56. Romano CC, 2005, CLIN IMMUNOL, V114, P86, DOI 10.1016/j.clim.2004.09.005
  57. Sadahiro A, 2007, REV SOC BRAS MED TRO, V40, P156, DOI 10.1590/S0037-86822007000200003
  58. Sato PK, 2011, SCAND J IMMUNOL, V74, P609, DOI 10.1111/j.1365-3083.2011.02614.x
  59. Sato P.K, 2021, MONOCYTE DERIV UNPUB
  60. Schutyser E, 2005, J LEUKOCYTE BIOL, V78, P14, DOI 10.1189/jlb.1204712
  61. Shortman K, 2002, NAT REV IMMUNOL, V2, P151, DOI 10.1038/nri746
  62. Silva LBR, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.01727
  63. Teixeira MD, 2014, MED MYCOL, V52, P19, DOI 10.3109/13693786.2013.794311
  64. Theodoro RC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037694
  65. Turissini DA, 2017, FUNGAL GENET BIOL, V106, P9, DOI 10.1016/j.fgb.2017.05.007
  66. Venturini J, 2014, BMC INFECT DIS, V14, DOI 10.1186/s12879-014-0552-x
  67. Vulcano M, 2003, J IMMUNOL, V170, P3843, DOI 10.4049/jimmunol.170.7.3843
  68. Xander P, 2007, MICROBES INFECT, V9, P1484, DOI 10.1016/j.micinf.2007.08.001