SARS-CoV-2 in a stream running through an underprivileged, underserved, urban settlement in Sao Paulo, Brazil: A 7-month follow-up

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
RAZZOLINI, Maria Tereza Pepe
BARBOSA, Mikaela Renata Funada
ARAUJO, Ronalda Silva de
OLIVEIRA, Ivo Freitas de
GARCIA, Suzi Cristina
Citação
ENVIRONMENTAL POLLUTION, v.290, article ID 118003, 7p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
COVID-19 pandemic has led to concerns on the circulation of SARS-CoV-2 in the environment, its infectivity from the environment and, the relevance of transmission via environmental compartments. During 31 weeks, water samples were collected from a heavily contaminated stream going through an urban, underprivileged community without sewage collection. Our results showed a statistically significant correlation between cases of COVID-19 and SARS in the community, and SARS-CoV-2 concentrations in the water. Based on the model, if the concentrations of SARS-CoV-RNA (N1 and N2 target regions) increase 10 times, there is an expected increase of 104% [95%CI: (62-157%)] and 92% [95%CI: (51-143%)], respectively, in the number of cases of COVID-19 and SARS. We believe that differences in concentration of the virus in the environment reflect the epidemiological status in the community, which may be important information for surveillance and controlling dissemination in areas with vulnerable populations and poor sanitation. None of the samples were found infectious based cultures. Our results may be applicable globally as similar communities exist worldwide.
Palavras-chave
Environmental monitoring, Contaminated water, SARS-CoV-2, COVID-19, Virus infectivity
Referências
  1. AGRESTI A, 1990, CATEGORICAL DATA ANA
  2. Ahmed W, 2020, SCI TOTAL ENVIRON, V728, DOI 10.1016/j.scitotenv.2020.138764
  3. Al-Gheethi A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187378
  4. Amirian ES, 2020, INT J INFECT DIS, V95, P363, DOI 10.1016/j.ijid.2020.04.057
  5. APHA, 2017, AM WAT WORKS ASS WAT, Vtwenty-second
  6. Bhowmick GD, 2020, NPJ CLEAN WATER, V3, DOI 10.1038/s41545-020-0079-1
  7. Bivins A, 2020, ENVIRON SCI TECH LET, V7, P937, DOI 10.1021/acs.estlett.0c00730
  8. Cai JH, 2020, CLIN INFECT DIS, V71, P1547, DOI 10.1093/cid/ciaa198
  9. Casanova L, 2009, WATER RES, V43, P1893, DOI 10.1016/j.watres.2009.02.002
  10. Chen YF, 2020, J MED VIROL, V92, P833, DOI 10.1002/jmv.25825
  11. Costa SF, 2021, CLIN INFECT DIS, V73, pE1214, DOI 10.1093/cid/ciaa1845
  12. de Jesus JG, 2020, REV INST MED TROP SP, V62, DOI [10.1590/S1678-9946202062030, 10.1590/s1678-9946202062030]
  13. de Oliveira LC, 2021, WATER RES, V195, DOI 10.1016/j.watres.2021.117002
  14. Decaro N, 2008, J VIROL METHODS, V151, P167, DOI 10.1016/j.jviromet.2008.05.016
  15. Foladori P, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140444
  16. Fumian T.M., 2021, J MED VIROL BRAZIL, P1, DOI [10.1002/ jmv.26786, DOI 10.1002/JMV.26786]
  17. Giacobbo A, 2021, SCI TOTAL ENVIRON, V774, DOI 10.1016/j.scitotenv.2021.145721
  18. Gonzalez R, 2020, WATER RES, V186, DOI 10.1016/j.watres.2020.116296
  19. Guerrero-Latorre L, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140832
  20. Gundy PM, 2009, FOOD ENVIRON VIROL, V1, P10, DOI 10.1007/s12560-008-9001-6
  21. Habitat U.N., 2013, SCALING UP AFFORDABL
  22. Holshue Michelle L, 2020, N Engl J Med, V382, P929, DOI 10.1056/NEJMoa2001191
  23. IBGE, 2010, AGL SUBN PRIM RES CE
  24. Jefferson T, 2020, Clin Infect Dis, DOI 10.1093/cid/ciaa1764
  25. La Rosa G, 2020, SCI TOTAL ENVIRON, V736, DOI 10.1016/j.scitotenv.2020.139652
  26. Langone M, 2021, ENVIRON POLLUT, V268, DOI 10.1016/j.envpol.2020.115806
  27. Medema G, 2020, ENVIRON SCI TECH LET, V7, P511, DOI 10.1021/acs.estlett.0c00357
  28. Pandey D, 2021, INT J HYG ENVIR HEAL, V231, DOI 10.1016/j.ijheh.2020.113634
  29. Pecson BM, 2021, ENVIRON SCI-WAT RES, V7, P504, DOI 10.1039/d0ew00946f
  30. Prado T, 2021, WATER RES, V191, DOI 10.1016/j.watres.2021.116810
  31. Randazzo W, 2020, WATER RES, V181, DOI 10.1016/j.watres.2020.115942
  32. Rimoldi SG, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140911
  33. Sims N, 2020, ENVIRON INT, V139, DOI 10.1016/j.envint.2020.105689
  34. Sylvestre E, 2021, WATER RES X, V11, DOI 10.1016/j.wroa.2021.100091
  35. Tang A, 2020, EMERG INFECT DIS, V26, P1337, DOI 10.3201/eid2606.200301
  36. Usman M, 2020, ENVIRON SCI TECHNOL, V54, P7758, DOI 10.1021/acs.est.0c02777
  37. van Doorn AS, 2020, ALIMENT PHARM THER, V52, P1276, DOI 10.1111/apt.16036
  38. Vogels CBF, 2020, NAT MICROBIOL, V5, P1299, DOI 10.1038/s41564-020-0761-6
  39. Wang WL, 2020, JAMA-J AM MED ASSOC, V323, P1843, DOI 10.1001/jama.2020.3786
  40. World Health Organization, 2020, STAT 2 M INT HLTH RE
  41. Wu FQ, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00614-20
  42. Wu XG, 2021, RES SOC STRAT MOBIL, V72, DOI 10.1016/j.rssm.2021.100584
  43. Xagoraraki I., 2020, WOMEN WATER QUALITY, P75, DOI [DOI 10.1007/978-3-030-17819-2_5, 10.1007/978-3-030-17819-2_5.]
  44. Xiao F, 2020, EMERG INFECT DIS, V26, P1920, DOI 10.3201/eid2608.200681