Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery

Carregando...
Imagem de Miniatura
Citações na Scopus
39
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
DOVE MEDICAL PRESS LTD
Citação
NEUROPSYCHIATRIC DISEASE AND TREATMENT, v.8, p.197-201, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Transcranial magnetic stimulation (TMS) is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus. Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI) scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure. Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES) was 4.16 +/- 1.02 mm (range: 2.56-5.27 mm). Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.
Palavras-chave
transcranial magnetic stimulation, cortical mapping, brain tumor
Referências
  1. Barker A T, 1999, Electroencephalogr Clin Neurophysiol Suppl, V51, P3
  2. BARKER AT, 1985, LANCET, V1, P1106
  3. Carrabba G, 2007, J Neurosurg Sci, V51, P45
  4. Dolbakyan E E, 2003, Neurosci Behav Physiol, V33, P555, DOI 10.1023/A:1023926603018
  5. Forster MT, 2011, NEUROSURGERY, V68, P1317, DOI 10.1227/NEU.0b013e31820b528c
  6. Fregni F, 2006, BIPOLAR DISORD, V8, P203, DOI 10.1111/j.1399-5618.2006.00291.x
  7. Fregni F, 2006, NEUROLOGY, V66, P1629, DOI 10.1212/01.wnl.0000218194.120504.60
  8. Herwig U, 2001, PSYCHIAT RES-NEUROIM, V108, P123, DOI 10.1016/S0925-4927(01)00121-4
  9. Herwig U, 2003, BRAIN TOPOGR, V16, P95, DOI 10.1023/B:BRAT.0000006333.93597.9d
  10. Kim J, 2008, MAGN RESON IMAGING, V26, P583, DOI 10.1016/j.mri.2007.10.011
  11. Krings T, 2001, MINIM INVAS NEUROSUR, V44, P234, DOI 10.1055/s-2001-19935
  12. Krings T, 2001, NEUROSURG REV, V24, P171
  13. Minichino A, 2012, NEUROPSYCH DIS TREAT, V8, P55, DOI 10.2147/NDT.S27025
  14. Neggers SFW, 2004, NEUROIMAGE, V21, P1805, DOI 10.1016/j.neuroimage.2003.12.006
  15. O'Connell NE, 2007, CLIN NEUROPHYSIOL, V118, P2451, DOI 10.1016/j.clinph.2007.08.006
  16. Picht T, 2011, NEUROSURGERY, V69, P581, DOI 10.1227/NEU.0b013e3182181b89
  17. Rossini PM, 2007, NEUROLOGY, V68, P484, DOI 10.1212/01.wnl.0000250268.13789.b2
  18. Saisanen L, 2008, J NEUROSCI METH, V169, P231, DOI 10.1016/j.jneumeth.2007.12.005
  19. Saitoh Y, 2007, J NEUROSURG, V107, P555, DOI 10.3171/JNS-07/09/0555
  20. Sala F, 2003, J Neurosurg Sci, V47, P79
  21. Schonfeldt-Lecuona C, 2005, BRAIN TOPOGR, V17, P253, DOI 10.1007/s10548-005-6033-1
  22. Sparing R, 2008, HUM BRAIN MAPP, V29, P82, DOI 10.1002/hbm.20360
  23. Tyc F, 2005, EUR J NEUROSCI, V21, P259, DOI 10.1111/j.1460-9568.2004.03835.x