Brain Correlates of the Alcohol Use Disorder Pharmacotherapy Response: A Systematic Review of Neuroimaging Studies

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
FLORENCE, Luiza
PERICO, Cintia de Azevedo-Marques
TORALES, Julio
VENTRIGLIO, Antonio
BERARDIS, Domenico De
AQUINO, Joao P. De
Citação
BRAIN SCIENCES, v.12, n.3, article ID 386, 15p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Although Alcohol Use Disorder (AUD) is highly prevalent worldwide, treating this condition remains challenging. Further, potential treatments for AUD do not fully address alcohol-induced neuroadaptive changes. Understanding the effects of pharmacotherapies for AUD on the human brain may lead to tailored, more effective treatments, and improved individual clinical outcomes. Objectives: We systematically reviewed the literature for studies investigating pharmacotherapies for AUD that included neuroimaging-based treatment outcomes. We searched the PubMed, Scielo, and PsycINFO databases up to January 2021. Study eligibility criteria, participants, and interventions: Eligible studies included those investigating pharmacotherapies for AUD and employing functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and/or proton magnetic resonance spectroscopy (H-MRS). Study appraisal and synthesis methods: Two independent reviewers screened studies' titles and abstracts for inclusion. Data extraction forms were shared among all the authors to standardize data collection. We gathered information on the following variables: sample size; mean age; sociodemographic and clinical characteristics; alcohol use status; study design and methodology; main neuroimaging findings and brain-regions of interest (i.e., brain areas activated by alcohol use and possible pharmacological interactions); and limitations of each study. Results: Out of 177 studies selected, 20 studies provided relevant data for the research topic. Findings indicate that: (1) Acamprosate and gabapentin may selectively modulate limbic regions and the anterior cingulate cortex; (2) Naltrexone and disulfiram effects may involve prefrontal, premotor, and cerebellar regions; (3) Pharmacotherapies acting on glutamate and GABA neurotransmission involve primarily areas underpinning reward and negative affective states, and; (4) Pharmacotherapies acting on opioid and dopamine systems may affect areas responsible for the cognitive and motor factors of AUD. Limitations: Most of the studies were focused on naltrexone. A small number of studies investigated the action of disulfiram and gabapentin, and no neuroimaging studies investigated topiramate. In addition, the time between medication and neuroimaging scans varied widely across studies. Conclusions: We identified key-brain regions modulated by treatments available for AUD. Some of the regions modulated by naltrexone are not specific to the brain reward system, such as the parahippocampal gyrus (temporal lobe), parietal and occipital lobes. Other treatments also modulate not specific regions of the reward system, but play a role in the addictive behaviors, including the insula and dorsolateral prefrontal cortex. The role of these brain regions in mediating the AUD pharmacotherapy response warrants investigation in future research studies.
Palavras-chave
alcohol, pharmacotherapy, neuroimaging, naltrexone, acamprosate, disulfiram, gabapentin
Referências
  1. American Psychiatric Association, 2013, DSM 5 DIAGN STAT MAN
  2. Bach P, 2020, ADDICT BIOL, V25, DOI 10.1111/adb.12717
  3. Castro Luis Andre, 2004, Revista Brasileira de Psiquiatria, V26, pS43
  4. Catafau AM, 1999, J NUCL MED, V40, P19
  5. Center for Substance Abuse Treatment, 2009, SMA09438 CTR SUBST A
  6. Claus ED, 2011, NEUROPSYCHOPHARMACOL, V36, P2086, DOI 10.1038/npp.2011.99
  7. de Laat B, 2019, BIOL PSYCHIAT, V86, P864, DOI 10.1016/j.biopsych.2019.05.021
  8. Degenhardt L, 2018, LANCET PSYCHIAT, V5, P987, DOI 10.1016/S2215-0366(18)30337-7
  9. Frye MA, 2016, J CLIN PSYCHOPHARM, V36, P669, DOI 10.1097/JCP.0000000000000590
  10. FULLER RK, 1986, JAMA-J AM MED ASSOC, V256, P1449, DOI 10.1001/jama.256.11.1449
  11. Furieri FA, 2007, J CLIN PSYCHIAT, V68, P1691, DOI 10.4088/JCP.v68n1108
  12. GBD (Global Burden of Disease Collaborative Network), 2017, LANCET
  13. Gilman S, 1996, ALCOHOL CLIN EXP RES, V20, P1456, DOI 10.1111/j.1530-0277.1996.tb01149.x
  14. Goldstein RZ, 2002, AM J PSYCHIAT, V159, P1642, DOI 10.1176/appi.ajp.159.10.1642
  15. Grodin EN, 2019, ALCOHOL CLIN EXP RES, V43, P2038, DOI 10.1111/acer.14167
  16. Hutton BF, 2014, EUR J NUCL MED MOL I, V41, pS3, DOI 10.1007/s00259-013-2606-5
  17. Johnson BA, 2005, ALCOHOL CLIN EXP RES, V29, P248, DOI 10.1097/01.ALC.0000153542.10188.B0
  18. Johnson BA, 2004, ALCOHOL CLIN EXP RES, V28, P295, DOI 10.1097/01.ALC.0000113409.47937.6C
  19. Kakko J, 2019, FRONT PSYCHIATRY, V10, DOI 10.3389/fpsyt.2019.00592
  20. Koob GF, 2010, NEUROPSYCHOPHARMACOL, V35, P217, DOI 10.1038/npp.2009.110
  21. Kranzler HR, 2018, JAMA-J AM MED ASSOC, V320, P815, DOI 10.1001/jama.2018.11406
  22. Langosch JM, 2012, J CLIN PSYCHOPHARM, V32, P661, DOI 10.1097/JCP.0b013e318267b586
  23. Latt NC, 2002, MED J AUSTRALIA, V176, P530, DOI 10.5694/j.1326-5377.2002.tb04550.x
  24. Lim AC, 2019, DRUG ALCOHOL DEPEN, V200, P181, DOI 10.1016/j.drugalcdep.2019.02.028
  25. Lukas SE, 2013, NEUROIMAGE, V78, P176, DOI 10.1016/j.neuroimage.2013.03.055
  26. Mann K, 2014, ALCOHOL CLIN EXP RES, V38, P2754, DOI 10.1111/acer.12546
  27. Meyerhoff DJ, 2018, FRONT PSYCHIATRY, V9, DOI 10.3389/fpsyt.2018.00078
  28. Meyerhoff Dieter J, 2014, Handb Clin Neurol, V125, P313, DOI 10.1016/B978-0-444-62619-6.00019-7
  29. Moreno-Rius J, 2017, DRUG ALCOHOL DEPEN, V173, P151, DOI 10.1016/j.drugalcdep.2016.12.028
  30. Morris LS, 2018, ADDICT BIOL, V23, P425, DOI 10.1111/adb.12503
  31. Myrick H, 2008, ARCH GEN PSYCHIAT, V65, P466, DOI 10.1001/archpsyc.65.4.466
  32. Naassila M, 1998, ALCOHOL CLIN EXP RES, V22, P802
  33. Naqvi NH, 2009, TRENDS NEUROSCI, V32, P56, DOI 10.1016/j.tins.2008.09.009
  34. Nestor LJ, 2019, EUR J NEUROSCI, V50, P2311, DOI 10.1111/ejn.14262
  35. Page MJ, 2021, PLOS MED, V18, DOI [10.1371/journal.pmed.1003583, 10.1016/j.ijsu.2021.105906]
  36. Pierri J.N., 2012, KAPLAN SADOCKS COMPR, V8th ed., P3
  37. Postuma RB, 2006, CEREB CORTEX, V16, P1508, DOI 10.1093/cercor/bhj088
  38. Prisciandaro JJ, 2021, AM J PSYCHIAT, V178, P829, DOI 10.1176/appi.ajp.2021.20121757
  39. Putzke J, 1996, EUR J PHARMACOL, V317, P39, DOI 10.1016/S0014-2999(96)00696-6
  40. Reus VI, 2018, AM J PSYCHIAT, V175, P86, DOI 10.1176/appi.ajp.2017.1750101
  41. Savulich G, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/tp.2017.34
  42. Schacht JP, 2017, NEUROPSYCHOPHARMACOL, V42, P2640, DOI 10.1038/npp.2017.74
  43. Schacht JP, 2013, PSYCHOPHARMACOLOGY, V227, P627, DOI 10.1007/s00213-013-2996-x
  44. Schacht JP, 2013, NEUROPSYCHOPHARMACOL, V38, P414, DOI 10.1038/npp.2012.195
  45. Skinner MD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087366
  46. Spagnolo PA, 2014, ALCOHOL CLIN EXP RES, V38, P3024, DOI 10.1111/acer.12581
  47. Stromberg MF, 2001, ALCOHOL, V23, P109, DOI 10.1016/S0741-8329(00)00137-3
  48. Sugrue LP, 2004, SCIENCE, V304, P1782, DOI 10.1126/science.1094765
  49. Umhau JC, 2010, ARCH GEN PSYCHIAT, V67, P1069, DOI 10.1001/archgenpsychiatry.2010.125
  50. Volkow ND, 2016, NEW ENGL J MED, V374, P363, DOI 10.1056/NEJMra1511480
  51. Weerts EM, 2008, NEUROPSYCHOPHARMACOL, V33, P653, DOI 10.1038/sj.npp.1301440
  52. Wiers CE, 2016, PROG BRAIN RES, V224, P175, DOI 10.1016/bs.pbr.2015.07.016
  53. World Health Organization, 2004, ICD 10 INT CLASSIFIC
  54. Yang X, 2016, NEUROSCI BIOBEHAV R, V66, P92, DOI 10.1016/j.neubiorev.2016.03.034