Non-invasive methods for iron overload evaluation in dysmetabolic patients

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ESPANA
Citação
ANNALS OF HEPATOLOGY, v.27, n.4, article ID 100707, 8p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Although hyperferritinemia may reflect the inflammatory status of patients with non-alcoholic fatty liver disease (NAFLD), approximately 33% of hyperferritinemia cases reflect real hepatic iron overload. Aim: To evaluate a non-invasive method for assessing mild iron overload in patients with NAFLD using 3T magnetic resonance imaging (MRI) relaxometry, serum hepcidin, and the expression of ferritin subunits. Methods: This cross-sectional study assessed patients with biopsy-proven NAFLD. MRI relaxometry was performed using a 3T scanner in all patients, and the results were compared with iron content determined by liver biopsy. Ferritin, hepcidin, and ferritin subunits were assessed and classified according to ferritin levels and to siderosis identified by liver biopsy. Results: A total of 67 patients with NAFLD were included in the study. MRI revealed mild iron overload in all patients (sensitivity, 73.5%; specificity, 70%). For mild (grade 1) siderosis, the transverse relaxation rate (R2*) threshold was 58.9 s-1 and the mean value was 72.5 s-1 (SD, 33.9), while for grades 2/3 it was 88.2 s-1 (SD, 31.9) (p < 0.001). The hepcidin threshold for siderosis was > 30.2 ng/mL (sensitivity, 87%; specificity, 82%). Ferritin H and ferritin L subunits were expressed similarly in patients with NAFLD, regardless of siderosis. There were no significant differences in laboratory test results between the groups, including glucose parameters and liver function tests. Conclusions: MRI relaxometry and serum hepcidin accurately assessed mild iron overload in patients with dysmetabolic iron overload syndrome.(c) 2022 Fundacion Clinica Medica Sur, A.C.
Palavras-chave
Hyperferritinemia, Non-alcoholic fatty liver disease, Relaxometry, Dysmetabolic iron overload syndrome
Referências
  1. Adams PC, 2011, J HEPATOL, V55, P453, DOI 10.1016/j.jhep.2011.02.010
  2. Aigner E, 2008, AM J CLIN NUTR, V87, P1374, DOI 10.1093/ajcn/87.5.1374
  3. Echeverria JMA, 2012, INSIGHTS IMAGING, V3, P173, DOI 10.1007/s13244-011-0132-1
  4. BOYD D, 1984, P NATL ACAD SCI-BIOL, V81, P4751, DOI 10.1073/pnas.81.15.4751
  5. Cleeman JI, 2001, JAMA-J AM MED ASSOC, V285, P2486, DOI 10.1001/jama.285.19.2486
  6. Corradini E, 2012, J GASTROEN HEPATOL, V27, P42, DOI 10.1111/j.1440-1746.2011.07014.x
  7. d'Assignies G, 2018, EUR RADIOL, V28, P2022, DOI 10.1007/s00330-017-5106-3
  8. Datz C, 2017, MINERVA ENDOCRINOL, V42, P173, DOI 10.23736/S0391-1977.16.02565-7
  9. Deugnier Y, 2017, PRESSE MED, V46, pE306, DOI 10.1016/j.lpm.2017.05.036
  10. Ellervik C, 2014, CLIN CHEM, V60, P1419, DOI 10.1373/clinchem.2014.229013
  11. Franca M, 2020, ABDOM RADIOL, V45, P3400, DOI 10.1007/s00261-020-02574-8
  12. Gandon Y, 2004, LANCET, V363, P357, DOI 10.1016/S0140-6736(04)15436-6
  13. Hagstrom H, 2016, LIVER INT, V36, P1688, DOI 10.1111/liv.13144
  14. Henninger B, 2015, EUR RADIOL, V25, P1356, DOI 10.1007/s00330-014-3528-8
  15. Henninger B, 2020, EUR RADIOL, V30, P383, DOI 10.1007/s00330-019-06380-9
  16. Hossain N, 2016, GASTROENT RES PRACT, V2016, DOI 10.1155/2016/7109270
  17. Koorts AM, 2011, BLOOD CELL MOL DIS, V47, P50, DOI 10.1016/j.bcmd.2011.04.006
  18. Koorts AM, 2012, EXP BIOL MED, V237, P688, DOI 10.1258/ebm.2012.011278
  19. Kowdley KV, 2012, HEPATOLOGY, V55, P77, DOI 10.1002/hep.24706
  20. Kuhn JP, 2017, RADIOLOGY, V284, P706, DOI 10.1148/radiol.2017161228
  21. Kuhn JP, 2012, RADIOLOGY, V265, P133, DOI 10.1148/radiol.12112520
  22. LEIBOLD EA, 1984, J BIOL CHEM, V259, P4327
  23. Lorcerie B, 2017, PRESSE MED, V46, pE329, DOI 10.1016/j.lpm.2017.09.028
  24. Moreno-Navarrete JM, 2014, DIABETES CARE, V37, P1092, DOI 10.2337/dc13-1602
  25. Marmur J, 2018, BMC GASTROENTEROL, V18, DOI 10.1186/s12876-018-0804-0
  26. Moirand R, 1997, LANCET, V349, P95, DOI 10.1016/S0140-6736(96)06034-5
  27. Pietrangelo A, 2011, J HEPATOL, V54, P173, DOI 10.1016/j.jhep.2010.08.004
  28. Plaikner M, 2020, EUR RADIOL, V30, P5826, DOI 10.1007/s00330-020-07010-5
  29. Queiroz-Andrade M, 2009, RADIOGRAPHICS, V29, P1575, DOI 10.1148/rg.296095511
  30. Rametta R, 2016, LIVER INT, V36, P1540, DOI 10.1111/liv.13124
  31. Riva A, 2008, WORLD J GASTROENTERO, V14, P4745, DOI 10.3748/wjg.14.4745
  32. Ruscitti P, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69031-w
  33. Ryan JD, 2018, LIVER INT, V38, P164, DOI 10.1111/liv.13513
  34. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  35. Sirlin CB, 2010, MAGN RESON IMAGING C, V18, P359, DOI 10.1016/j.mric.2010.08.014
  36. Storey P, 2007, J MAGN RESON IMAGING, V25, P540, DOI 10.1002/jmri.20816
  37. Utzschneider KM, 2014, J DIABETES COMPLICAT, V28, P177, DOI 10.1016/j.jdiacomp.2013.11.007
  38. Valenti L, 2006, HEPATOLOGY, V44, P857, DOI 10.1002/hep.21329
  39. Wang ZM, 2006, ACTA CRYSTALLOGR D, V62, P800, DOI 10.1107/S0907444906018294
  40. Wood JC, 2005, BLOOD, V106, P1460, DOI 10.1182/blood-2004-10-3982
  41. Wood JC, 2015, MAGN RESON IMAGING, V33, P761, DOI 10.1016/j.mri.2015.02.016