Distinct Immunological Profiles Help in the Maintenance of Salivary Secretory IgA Production in Mild Symptoms COVID-19 Patients

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SANTOS, Juliana de Melo Batista dos
AMARAL, Jonatas Bussador do
FRANCA, Carolina Nunes
MONTEIRO, Fernanda Rodrigues
ALVARES-SARAIVA, Anuska Marcelino
KALIL, Sandra
DURIGON, Edison Luiz
OLIVEIRA, Danielle Bruna Leal
RODRIGUES, Silvia Sanches
HELLER, Debora
Citação
FRONTIERS IN IMMUNOLOGY, v.13, article ID 890887, 13p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundRelevant aspects regarding the SARS-CoV-2 pathogenesis and the systemic immune response to this infection have been reported. However, the mucosal immune response of the upper airways two months after SARS-CoV-2 infection in patients with mild/moderate symptoms is still not completely described. Therefore, we investigated the immune/inflammatory responses of the mucosa of the upper airways of mild/moderate symptom COVID-19 patients two months after the SARS-CoV-2 infection in comparison to a control group composed of non-COVID-19 healthy individuals. MethodsA cohort of 80 volunteers (age 37.2 +/- 8.2), including non-COVID-19 healthy individuals (n=24) and COVID-19 patients (n=56) who presented mild/moderate symptoms during a COVID-19 outbreak in Brazil in November and December of 2020. Saliva samples were obtained two months after the COVID-19 diagnosis to assess the levels of SIgA by ELISA and the cytokines by multiplex analysis. ResultsSalivary levels of SIgA were detected in 39 volunteers into the COVID-19 group and, unexpectedly, in 14 volunteers in the control group. Based on this observation, we distributed the volunteers of the control group into without SIgA or with SIgA sub-groups, and COVID-19 group into without SIgA or with SIgA sub-groups. Individuals with SIgA showed higher levels of IL-10, IL-17A, IFN-gamma, IL-12p70, IL-13, and IFN-alpha than those without SIgA. In intergroup analysis, the COVID-19 groups showed higher salivary levels of IL-10, IL-13, IL-17A, and IFN-alpha than the control group. No statistical differences were verified in the salivary levels of IL-6 and IFN-beta. Lower IL-12p70/IL-10 and IFN-gamma/IL-10 ratios were found in the control group without SIgA than the control group with SIgA and the COVID-19 group with SIgA. ConclusionWe were able to present, for the first time, that associations between distinct immunological profiles can help the mucosal immunity to maintain the salivary levels of SIgA in COVID-19 patients two months after the SARS-CoV-2 infection.
Palavras-chave
mucosal immunity, saliva, cytokines, interferon, interleukin, SARS-CoV-2
Referências
  1. Abbas AK, 1996, NATURE, V383, P787, DOI 10.1038/383787a0
  2. Allen JE, 2011, NAT REV IMMUNOL, V11, P375, DOI 10.1038/nri2992
  3. Almeida EB, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/2852181
  4. Anka AU, 2021, SCAND J IMMUNOL, V93, DOI 10.1111/sji.12998
  5. Anthony RM, 2007, NAT REV IMMUNOL, V7, P975, DOI 10.1038/nri2199
  6. Assiri A, 2013, NEW ENGL J MED, V369, P407, DOI 10.1056/NEJMoa1306742
  7. dos Santos JDB, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.595343
  8. Bene MC, 2020, CLIN INFECT DIS, V71, P897, DOI 10.1093/cid/ciaa426
  9. Boyaka PN, 1999, IMMUNOL RES, V20, P207, DOI 10.1007/BF02790404
  10. Buczko P, 2015, J PHYSIOL PHARMACOL, V66, P3
  11. Cella M, 2009, NATURE, V457, P722, DOI 10.1038/nature07537
  12. COATES RA, 1992, J CLIN EPIDEMIOL, V45, P245, DOI 10.1016/0895-4356(92)90084-Z
  13. Contoli M, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.648004
  14. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  15. Dare RK, 2007, J INFECT DIS, V196, P1321, DOI 10.1086/521308
  16. De Diego ML, 2014, VIRUS RES, V194, P124, DOI 10.1016/j.virusres.2014.07.024
  17. Dezfuli Neda K, 2020, Tanaffos, V19, P274
  18. Eduardo FD, 2022, CLIN ORAL INVEST, V26, P1561, DOI 10.1007/s00784-021-04129-7
  19. Emery SL, 2004, EMERG INFECT DIS, V10, P311, DOI 10.3201/eid1002.030759
  20. Faure E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088716
  21. Fernandes LL, 2020, J DENT RES, V99, P1435, DOI 10.1177/0022034520960070
  22. Ford JG, 2001, J IMMUNOL, V167, P1769, DOI 10.4049/jimmunol.167.3.1769
  23. Foster R, 2019, NEUROIMMUNOMODULAT, V26, P1, DOI 10.1159/000494559
  24. Fry AM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015098
  25. Fukushi M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021207
  26. Gern JE, 2006, J ALLERGY CLIN IMMUN, V117, P72, DOI 10.1016/j.jaci.2005.10.002
  27. Guo LY, 2012, TRENDS IMMUNOL, V33, P598, DOI 10.1016/j.it.2012.07.006
  28. Gustine JN, 2021, AM J PATHOL, V191, P4, DOI 10.1016/j.ajpath.2020.08.009
  29. Hamada H, 2009, J IMMUNOL, V182, P3469, DOI 10.4049/jimmunol.0801814
  30. Hayden FG, 1998, J CLIN INVEST, V101, P643, DOI 10.1172/JCI1355
  31. Heim A, 2003, J MED VIROL, V70, P228, DOI 10.1002/jmv.10382
  32. HIRANO T, 1988, EUR J IMMUNOL, V18, P1797, DOI 10.1002/eji.1830181122
  33. Hoffmann JP, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.672523
  34. Huang CL, 2020, LANCET, V395, P497, DOI 10.1016/S0140-6736(20)30183-5
  35. Hupin C, 2013, ALLERGY, V68, P1589, DOI 10.1111/all.12274
  36. Jafarzadeh A, 2021, VIRAL IMMUNOL, V34, P307, DOI 10.1089/vim.2020.0076
  37. Jartti T, 2014, ALLERGY, V69, P658, DOI 10.1111/all.12396
  38. Jin YF, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12040372
  39. KATZ MH, 1992, AIDS, V6, P95, DOI 10.1097/00002030-199201000-00013
  40. Khalid I, 2016, RESP CARE, V61, P340, DOI 10.4187/respcare.04325
  41. Ko JH, 2016, J INFECTION, V73, P468, DOI 10.1016/j.jinf.2016.08.005
  42. Kodani M, 2011, J CLIN MICROBIOL, V49, P2175, DOI 10.1128/JCM.02270-10
  43. Kudva A, 2011, J IMMUNOL, V186, P1666, DOI 10.4049/jimmunol.1002194
  44. Kumar N, 2020, SCIENCE, V367, P1008, DOI 10.1126/science.aaz5807
  45. Li L, 1996, CELL IMMUNOL, V168, P133, DOI 10.1006/cimm.1996.0059
  46. Liang B, 2001, J VIROL, V75, P5416, DOI 10.1128/JVI.75.11.5416-5420.2001
  47. Liu J, 2020, EBIOMEDICINE, V55, DOI 10.1016/j.ebiom.2020.102763
  48. Lowery SA, 2021, CELL HOST MICROBE, V29, P1052, DOI 10.1016/j.chom.2021.05.004
  49. Lu X, 2006, ARCH VIROL, V151, P1587, DOI 10.1007/s00705-005-0722-7
  50. Lu XY, 2008, J CLIN MICROBIOL, V46, P533, DOI 10.1128/JCM.01739-07
  51. Mahallawi WH, 2018, CYTOKINE, V104, P8, DOI 10.1016/j.cyto.2018.01.025
  52. Malmgaard L, 2004, J INTERF CYTOK RES, V24, P439, DOI 10.1089/1079990041689665
  53. Malmgaard L, 2003, J GEN VIROL, V84, P2497, DOI 10.1099/vir.0.19251-0
  54. Marashian SM, 2015, IRAN J ALLERGY ASTHM, V14, P346
  55. MATSUKI Y, 1992, IMMUNOLOGY, V76, P42
  56. Metzger DW, 1997, EUR J IMMUNOL, V27, P1958, DOI 10.1002/eji.1830270820
  57. Moore JB, 2020, SCIENCE, V368, P473, DOI 10.1126/science.abb8925
  58. Morgan OW, 2013, INFLUENZA OTHER RESP, V7, P280, DOI 10.1111/j.1750-2659.2012.00393.x
  59. Moser M, 2000, NAT IMMUNOL, V1, P199, DOI 10.1038/79734
  60. Naruishi K, 2018, J CELL PHYSIOL, V233, P6393, DOI 10.1002/jcp.26521
  61. Noda K, 2011, MICROBIOL IMMUNOL, V55, P574, DOI 10.1111/j.1348-0421.2011.00352.x
  62. Prasso JE, 2017, CLIN CHEST MED, V38, P127, DOI 10.1016/j.ccm.2016.11.006
  63. Ridker PM, 1997, NEW ENGL J MED, V336, P973, DOI 10.1056/NEJM199704033361401
  64. Samuel PJ, 2020, J INTERF CYTOK RES, V40, P511, DOI 10.1089/jir.2020.0089
  65. Santini SM, 2000, J EXP MED, V191, P1777, DOI 10.1084/jem.191.10.1777
  66. Sawa S, 2011, NAT IMMUNOL, V12, P320, DOI 10.1038/ni.2002
  67. Sawa S, 2010, SCIENCE, V330, P665, DOI 10.1126/science.1194597
  68. Smith PD, 2013, PRINCIPLES OF MUCOSAL IMMUNOLOGY, P1
  69. Spadaro F, 2012, BLOOD, V119, P1407, DOI 10.1182/blood-2011-06-363564
  70. Spits H, 2012, ANNU REV IMMUNOL, V30, P647, DOI 10.1146/annurev-immunol-020711-075053
  71. Tang L, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.570993
  72. Tekkanat KK, 2001, AM J PATHOL, V159, P631, DOI 10.1016/S0002-9440(10)61734-8
  73. Tekkanat KK, 2001, J IMMUNOL, V166, P3542, DOI 10.4049/jimmunol.166.5.3542
  74. Tompkins WA, 1999, J INTERF CYTOK RES, V19, P817, DOI 10.1089/107999099313325
  75. Totura AL, 2012, CURR OPIN VIROL, V2, P264, DOI 10.1016/j.coviro.2012.04.004
  76. Trinchieri G, 1996, J LEUKOCYTE BIOL, V59, P505, DOI 10.1002/jlb.59.4.505
  77. Trondsen M, 2015, SCAND J IMMUNOL, V81, P305, DOI 10.1111/sji.12288
  78. Vaisberg M, 2019, NUTRIENTS, V11, DOI 10.3390/nu11071678
  79. Vogel LA, 1996, INT IMMUNOL, V8, P1955, DOI 10.1093/intimm/8.12.1955
  80. Wang J, 2015, FREE RADICAL BIO MED, V85, P95, DOI 10.1016/j.freeradbiomed.2015.04.005
  81. Wills-Karp M, 2001, J ALLERGY CLIN IMMUN, V107, P9, DOI 10.1067/mai.2001.112265
  82. Woof JM, 2006, J PATHOL, V208, P270, DOI 10.1002/path.1877
  83. World Health Organization, 2020, WHO DIRECTOR GEN OPE
  84. Wu MM, 2016, MOL NUTR FOOD RES, V60, P1637, DOI 10.1002/mnfr.201600026
  85. Yao ZX, 2020, AGING-US, V12, P7639, DOI 10.18632/aging.103101
  86. Zhang Y, 2016, PERIODONTOL 2000, V70, P38, DOI 10.1111/prd.12099
  87. Zhao SZ, 2020, EVID-BASED COMPL ALT, V2020, DOI 10.1155/2020/9316763