The role of the microbiome in precision medicine

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
bookPart
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
PINCELLI, J. V.
VITTORELLI, L. O.
STABELLINI, N.
Citação
Pincelli, J. V.; Vittorelli, L. O.; Stabellini, N.; Pinho, J. R. R.. The role of the microbiome in precision medicine. In: . PRECISION MEDICINE FOR INVESTIGATORS, PRACTITIONERS AND PROVIDERS: ELSEVIER, 2019. p.13-18.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The human gut is heavily populated by bacterial communities. One gram of stool contains about 1011 organisms composed by up to thousands of different bacterial species, mostly anaerobic. The whole of these microbial groups is called microbiota, and the pool of their genes, microbiome. Composition of the microbiota is directly connected to endogenous and exogenous characteristics of the host, such as diet, genetics, lifestyle, and use of some kinds of medications. Several diseases, such as obesity, inflammatory bowel disease, cardiovascular conditions, type II diabetes, oncologic diseases, and systemic lupus erythematosus, have already been associated with the intestinal microbiota. Due to the greater understanding of its association with the human body and its potential, the microbiome is being increasingly studied as a therapeutic target using probiotics and prebiotics. One of the examples of microbiome use as therapy is fecal microbiota transplantation, for the treatment of recurrent infections by Clostridium difficile. © 2020 Elsevier Inc. All rights reserved.
Palavras-chave
Cancer, Diabetes mellitus, Fecal microbiota transplantation, Gastrointestinal microbiome, Inflammatory bowel diseases, Microbiota, Next generation sequencing, Obesity, Omics
Referências
  1. Uhlig, H.H., Powrie, F., Dendritic cells and the intestinal bacterial flora: A role for localized mucosal immune responses (2003) J. Clin. Investig., 112, pp. 648-651. , https://www.jci.org/articles/view/19545, [Internet], Available from:
  2. Xu, J., Gordon, J.I., Honor thy symbionts (2003) Proc. Natl. Acad. Sci., 100 (18), pp. 10452-10459. , https://www.pnas.org/content/100/18/10452, September 2, [Internet]. Available from:
  3. Baetge, E.E., Next-generation nutritional biomarkers to guide better health care (2016) 84th nestlé nutrition institute workshop, Lausanne, September 2014 [internet], , https://books.google.com.br/books?hl=pt-BR&lr=&id=Osh2CwAAQBAJ&oi=fnd&pg=PP1&dq=3-%09Baetge+EE,+Dhawan+A,+Prentice+AM+(eds):+Next-Generation+Nutritional+Biomarkers+to+Guide+Better+Health+Care.+Nestlé+Nutr+Inst+Workshop+Ser.+Nestec+Ltd.+Vevey/S.+Karger+AG+, Available from:
  4. Cheng, J., Ringel-Kulka, T., Heikamp-De Jong, I., Ringel, Y., Carroll, I., De Vos, W.M., Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children (2016) ISME J., 10 (4), pp. 1002-1014. , https://www.nature.com/articles/ismej2015177, [Internet]. Available from:
  5. Lynch, S.V., Pedersen, O., The human intestinal microbiome in health and disease (2016) N. Engl. J. Med., 375 (24), pp. 2369-2379. , http://www.nejm.org/doi/10.1056/NEJMra1600266, Phimister EG, editor, December 15, [Internet]. Available from:
  6. Consortium, T.H.M.P., Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J.H., Structure, function and diversity of the healthy human microbiome (2012) Nature, 486, p. 207. , https://doi.org/10.1038/nature11234, June 13, [Internet]. Available from:
  7. Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Human gut microbiome viewed across age and geography (2012) Nature, 486, pp. 222-227. , http://www.nature.com/articles/nature11053, [Internet], Nature Publishing Group
  8. Available from:
  9. Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I., Microbial ecology: Human gut microbes associated with obesity (2006) Nature, 444 (7122), pp. 1022-1023. , https://www.nature.com/articles/4441022a, [Internet]. Available from:
  10. Hall, A.B., Tolonen, A.C., Xavier, R.J., Human genetic variation and the gut microbiome in disease (2017) Nat. Rev. Genet., 18 (11), pp. 690-699. , https://www.nature.com/nrg/journal/v18/n11/abs/nrg.2017.63.html, [Internet]. Available from:
  11. Goodrich, J., Davenport, E., Genetic determinants of the gut microbiome in UK twins (2016) Cell Host Microbe, , https://www.sciencedirect.com/science/article/pii/S1931312816301536, Elsevier [Internet]. Available from:
  12. Knights, D., Silverberg, M.S., Weersma, R.K., Gevers, D., Dijkstra, G., Huang, H., Complex host genetics influence the microbiome in inflammatory bowel disease (2014) Genome. Med., 6 (12), p. 107. , http://genomemedicine.biomedcentral.com/articles/10.1186/s13073-014-0107-1, December 2, [Internet]
  13. Herd, P., Palloni, A., Rey, F., Dowd, J.B., Social and population health science approaches to understand the human microbiome (2018) Nat. Human Behav, , https://www.nature.com/articles/s41562-018-0452-y, nature.com [Internet]. Available from:
  14. McDade, T.W., The ecologies of human immune function (2005) Annu. Rev. Anthropol., 34 (1), pp. 495-521. , http://www.annualreviews.org/doi/10.1146/annurev.anthro.34.081804.120348, October, [Internet]. Available from:
  15. Fagundes, C.P., Glaser, R., Kiecolt-glaser, J.K., Brain, behavior, and immunity stressful early life experiences and immune dysregulation across the lifespan (2012) Behav. Med., pp. 1-5. , https://www.sciencedirect.com/science/article/pii/S0889159112001821, [Internet]. Available from:
  16. Codagnone, M.G., Spichak, S., O’Mahony, S.M., O’Leary, O.F., Clarke, G., Stanton, C., Programming bugs: Microbiota and the developmental origins of brain health and disease (2018) Biol. Psychiatry, pp. 150-163. , https://linkinghub.elsevier.com/retrieve/pii/S0006322318316056, January, [Internet]. Available from:
  17. Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns (2010) Proc. Natl. Acad. Sci., 107 (26), pp. 11971-11975. , http://www.pnas.org/content/107/26/11971.short, [Internet]. Available from:
  18. Mueller, N.T., Whyatt, R., Hoepner, L., Oberfield, S., Dominguez-Bello, M.G., Widen, E.M., Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity (2015) Int. J. Obes., 39 (4), pp. 665-670. , https://www.nature.com/articles/ijo2014180, [Internet]. Available from:
  19. Wlodarska, M., Kostic, A.D., Xavier, R.J., An integrative view of microbiome-host interactions in inflammatory bowel diseases (2015) Cell Host Microbe, 17, pp. 577-591. , https://www.sciencedirect.com/science/article/pii/S1931312815001663, [Internet], Available from:
  20. Imhann, F., Vich Vila, A., Bonder, M.J., Fu, J., Gevers, D., Visschedijk, M.C., Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease (2018) Gut, 67 (1), pp. 108-119. , https://gut.bmj.com/content/67/1/108.abstract, [Internet]. Available from:
  21. Huttenhower, C., Kostic, A.D., Xavier, R.J., Inflammatory bowel disease as a model for translating the microbiome (2014) Immunity, 40, pp. 843-854. , https://www.sciencedirect.com/science/article/pii/S1074761314001939, [Internet], Available from:
  22. Zhernakova, D.V., Le, T.H., Kurilshikov, A., Atanasovska, B., Bonder, M.J., Sanna, S., Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome (2018) Nat. Genet., 50 (11), pp. 1524-1532. , https://www.nature.com/articles/s41588-018-0224-7, [Internet]. Available from:
  23. De Martel, C., Ferlay, J., Franceschi, S., Vignat, J., Bray, F., Forman, D., Global burden of cancers attributable to infections in 2008: A review and synthetic analysis (2012) Lancet Oncol., 13 (6), pp. 607-615. , https://www.sciencedirect.com/science/article/pii/S1470204512701377, June 1, [Internet]. Available from:
  24. Goodman, B., Gardner, H., The microbiome and cancer (2018) J. Pathol., 244, pp. 667-676. , http://www.ncbi.nlm.nih.gov/pubmed/29377130, [Internet], Available from:
  25. Zackular, J.P., Baxter, N.T., Iverson, K.D., Sadler, W.D., Petrosino, J.F., Chen, G.Y., The gut microbiome modulates colon tumorigenesis (2013) MBio, 4 (6). , http://www.ncbi.nlm.nih.gov/pubmed/24194538, November 5, [Internet]. e00692-13. Available from:
  26. Peek, R.M., Blaser, M.J., Helicobacter pylori and gastrointestinal tract adenocarcinomas (2002) Nat. Rev. Cancer, 2 (1), pp. 28-37. , http://www.ncbi.nlm.nih.gov/pubmed/11902583, January, [Internet]. Available from:
  27. van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., Duodenal infusion of donor feces for recurrent Clostridium difficile (2013) N. Engl. J. Med., 368 (5), pp. 407-415. , http://www.nejm.org/doi/10.1056/NEJMoa1205037, January 31, [Internet]. Available from:
  28. Kelly, C.R., Kahn, S., Kashyap, P., Laine, L., Rubin, D., Atreja, A., Update on fecal microbiota transplantation 2015: Indications, methodologies, mechanisms, and outlook (2015) Gastroenterology, 149 (1), pp. 223-237. , https://www.sciencedirect.com/science/article/pii/S0016508515006800, [Internet]. Available from:
  29. Fecal transplant in inflammatory bowel disease (2017) Gastroenterol. Clin. North Am., 46 (4), pp. 825-837. , https://www.gastro.theclinics.com/article/S0889-8553(17)30086-9/abstract, A.S. B, C.R. K, [Internet]. Available from:
  30. Shi, Y., Dong, Y., Huang, W., Zhu, D., Mao, H., Su, P., Fecal microbiota transplantation for ulcerative colitis: A systematic review and meta-analysis (2016) PLoS One, 11 (6), p. e0157259. , http://dx.plos.org/10.1371/journal.pone.0157259, Singh UP, editor, June 13, [Internet]. Available from:
  31. Versalovic, J., Keitel, W., Watson, M., Dunne, M., (2009) HMP initiative 1: Core microbiome sampling protocol a human microbiome project -core microbiome sampling protocol A, , http://www.fda.gov/cder/guidance/959fnl.pdf, Available from:
  32. Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson, K.Y., Evaluation of next generation sequencing platforms for population targeted sequencing studies (2009) Genome Biol., 10 (3), p. R32. , http://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r32, March 27, [Internet]. Available from:
  33. Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study (1991) J. Bacteriol., 173 (2), pp. 697-703. , http://www.ncbi.nlm.nih.gov/pubmed/1987160, January 1, [Internet]. Available from:
  34. Reardon, S., Bacterium can reverse autism-like behaviour in mice (2013) Nature, , http://www.nature.com/doifinder/10.1038/nature.2013.14308, December 5, [Internet]. Available from:
  35. Zhang, W., Li, F., Nie, L., Integrating multiple “omics” analysis for microbial biology: Application and methodologies (2010) Microbiology, 156 (2), pp. 287-301. , http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.034793-0, February 1, [Internet]. Available from:
  36. Mimee, M., Citorik, R., Lu, T.K., Microbiome therapeutics-advances and challenges (2016) Adv. Drug Deliv. Rev, , https://www.sciencedirect.com/science/article/pii/S0169409X16301429, Elsevier [Internet], Available from:
  37. Hongyu Zhang, D.J., Manipulation of microbiome, a promising therapy for inflammatory bowel diseases (2014) J. Clin. Cell Immunol., 5 (4). , https://pdfs.semanticscholar.org/2f1e/8625cfda846f097d689894f2f719278c6a08.pdf, [Internet]. Available from:
  38. Bashiardes, S., Tuganbaev, T., Federici, S., Elinav, E., The microbiome in anti-cancer therapy (2017) Semin. Immunol., 32, pp. 74-81. , https://www.sciencedirect.com/science/article/pii/S1044532316300914, [Internet], Available from:
  39. Zmora, N., Zeevi, D., Korem, T., Segal, E., Elinav, E., Taking it personally: Personalized utilization of the human microbiome in health and disease (2016) Cell Host Microbe, 19, pp. 12-20. , https://linkinghub.elsevier.com/retrieve/pii/S1931312815005089, [internet], Available from:
  40. Mathur, S., Sutton, J., Personalized medicine could transform healthcare (review) (2017) Biomed. Rep., 7 (1), pp. 3-5. , https://www.spandidos-publications.com/10.3892/br.2017.922, July, [Internet]. Available from:
  41. Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang, L., Schloss, J.A., The NIH human microbiome project (2009) Genome Res., 19 (12), pp. 2317-2323. , http://genome.cshlp.org/cgi/doi/10.1101/gr.096651.109, December 1, [Internet]. Available from:
  42. Simoens, S., Health economics of antibiotics (2010) Pharmaceuticals, 3 (5), pp. 1348-1359. , http://www.mdpi.com/1424-8247/3/5/1348, April 29, [Internet]. Available from:
  43. Founou, R.C., Founou, L.L., Essack, S.Y., Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis (2017) PLoS One, 12, p. e0189621. , http://dx.plos.org/10.1371/journal.pone.0189621, [Internet]. Butaye P, editor, Available from:
  44. Arbel, L.T., Hsu, E., McNally, K., Cost-effectiveness of fecal microbiota transplantation in the treatment of recurrent clostridium difficile infection: A literature review (2017) Cureus, , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652885/, [Internet]. Available from:
  45. Cani, P.D., Human gut microbiome: Hopes, threats and promises (2018) Gut. BMJ Publishing Group, 67, pp. 1716-1725. , http://www.ncbi.nlm.nih.gov/pubmed/29934437, [Internet], Available from:
  46. Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D., Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation (2016) Nature, 533 (7604), pp. 543-546. , http://www.nature.com/articles/nature17645, May 4, [Internet]. Available from:
  47. Guilhot, E., Khelaifia, S., La Scola, B., Raoult, D., Dubourg, G., Methods for culturing anaerobes from human specimen (2018) Future Microbiol., 13, pp. 369-381. , https://www.futuremedicine.com/doi/10.2217/fmb-2017-0170, [Internet]. Future Medicine Ltd London, UK, Available from:
  48. McDonald, D., Birmingham, A., Knight, R., Context and the human microbiome (2015) Microbiome. BioMed. Central, 3, p. 52. , http://www.microbiomejournal.com/content/3/1/52, [Internet], Available from:
  49. Blaut, M., Collins, M.D., Welling, G.W., Doré, J., van Loo, J., de Vos, W., Molecular biological methods for studying the gut microbiota: The EU human gut flora project (2002) Br. J. Nutr., 87 (6), pp. 203-211. , http://www.journals.cambridge.org/abstract_S0007114502000971, May 9, [Internet]. Available from:
  50. McNulty, N.P., Yatsunenko, T., Hsiao, A., Faith, J.J., Muegge, B.D., Goodman, A.L., The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins (2011) Sci. Transl. Med., 3 (106), p. 106ra106. , http://www.ncbi.nlm.nih.gov/pubmed/22030749, October 26, [Internet]. Available from:
  51. Arnold, J.W., Roach, J., Azcarate-Peril, M.A., Emerging technologies for gut microbiome research (2016) Trends Microbiol., 24, pp. 887-901. , https://www.sciencedirect.com/science/article/pii/S0966842X16300713, [internet]. Elsevier Current Trends, Available from:
  52. Waldor, M.K., Tyson, G., Borenstein, E., Ochman, H., Moeller, A., Finlay, B.B., Where next for microbiome research? (2015) PLoS Biol., 13 (1), p. e1002050. , http://dx.plos.org/10.1371/journal.pbio.1002050, January 20, [Internet]. Available from:
  53. Manor, O., Levy, R., Borenstein, E., Mapping the inner workings of the microbiome: Genomic-and metagenomic-based study of metabolism and metabolic interactions in the human microbiome (2014) Cell Metabol., 20, pp. 742-752. , https://www.sciencedirect.com/science/article/pii/S1550413114003295, [Internet]. Cell Press, Available from:
  54. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria (2001) Fao Who, pp. 1-34. , https://ci.nii.ac.jp/naid/10030377877/, October, [Internet]. Available from:
  55. Nova, E., Pérez De Heredia, F., Gómez-Martínez, S., Marcos, A., The role of probiotics on the microbiota: Effect on obesity (2015) Nutr. Clin. Pract., 31, pp. 387-400. , http://doi.wiley.com/10.1177/0884533615620350, [internet]. John Wiley & Sons, Ltd, Available from:
  56. Kadooka, Y., Sato, M., Imaizumi, K., Ogawa, A., Ikuyama, K., Akai, Y., Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial (2010) Eur. J. Clin. Nutr., 64 (6), pp. 636-643. , http://www.nature.com/articles/ejcn201019, June 10, [Internet]. Available from:
  57. Kadooka, Y., Sato, M., Ogawa, A., Miyoshi, M., Uenishi, H., Ogawa, H., Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial (2013) Br. J. Nutr., 110 (9), pp. 1696-1703. , http://www.journals.cambridge.org/abstract_S0007114513001037, November 25, [Internet]. Available from:
  58. Peters, B.A., Shapiro, J.A., Church, T.R., Miller, G., Trinh-Shevrin, C., Yuen, E., Friedlander, C., Ahn, J., A taxonomic signature of obesity in a large study of American adults (2018) Sci. Rep., 8 (1), p. 9749. , June 27
  59. Dubin, K., Callahan, M.K., Ren, B., Khanin, R., Viale, A., Ling, L., Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis (2016) Nat. Commun., 7 (1), p. 10391. , http://www.nature.com/articles/ncomms10391, December 2, [Internet]. Available from:
  60. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation (2013) Nature, 504 (7480), pp. 451-455. , http://www.nature.com/articles/nature12726, December 13, [Internet]. Available from: