Exergy performance of human body under physical activities

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
MADY, Carlos Eduardo Keutenedjian
ALBUQUERQUE, Cyro
YANAGIHARA, Jurandir Itizo
OLIVEIRA JR., Silvio de
Citação
ENERGY, v.62, p.370-378, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The aim of this work is to apply performance indicators for individuals under physical activity based on the concepts of exergy destroyed and exergy efficiency. The cardiopulmonary exercise test is one of the most used tests to assess the functional capacity of individuals with varying degrees of physical training. To perform the exergy analysis during the test, it is necessary to calculate heat and mass flow rates, associated with radiation, convection, vaporization and respiration, determined from the measurements and some relations found in the literature. The energy balance allowed the determination of the internal temperature over time and the exergy variation of the body along the experiment. Eventually, it was possible to calculate the destroyed exergy and the exergy efficiency from the exergy analysis. The exergy rates and flow rates are dependent of the exercise level and the body metabolism. The results show that the relation between the destroyed exergy and the metabolism is almost constant during the test, furthermore its value has a great dependence of the subject age. From the exergy analysis it was possible to divide the subjects according to their training level, for the same destroyed exergy, subjects with higher lactate threshold can perform more work.
Palavras-chave
Exergy analysis, Exergy efficiency, Treadmill running, Aerobic threshold
Referências
  1. ALBERTY RA, 1992, BIOCHEMISTRY-US, V31, P10610, DOI 10.1021/bi00158a025
  2. Alberty RA, 1998, ARCH BIOCHEM BIOPHYS, V353, P116, DOI 10.1006/abbi.1998.0638
  3. Albuquerque-Neto C, 2010, INT J THERMODYN, V13, P105
  4. AOKI I, 1991, J THEOR BIOL, V150, P215, DOI 10.1016/S0022-5193(05)80333-9
  5. ASHRAE, 1993, HDB FUND, P1
  6. BALMER RT, 1982, CHEM ENG COMMUN, V17, P171, DOI 10.1080/00986448208911623
  7. Batato M., 1990, ENTROPIE, V26, P120
  8. Bijker KE, 2001, MED SCI SPORT EXER, V33, P1546, DOI 10.1097/00005768-200109000-00019
  9. CAVAGNA GA, 1977, J PHYSIOL-LONDON, V268, P467
  10. Dovjak M, 2012, INDOOR BUILT ENVIRON, P1
  11. Feen WO, 1930, AM J PHYSIOL, V93, P433
  12. Ferreira MS, 2009, INT COMMUN HEAT MASS, V36, P718, DOI 10.1016/j.icheatmasstransfer.2009.03.010
  13. Incropera F.P., 2006, FUNDAMENTALS HEAT MA
  14. Isawa K, 2002, LOWEX NEWS IEA ECBCS
  15. ITO A, 1983, MED SCI SPORT EXER, V15, P299, DOI 10.1249/00005768-198315040-00009
  16. Jones AM, 1996, J SPORT SCI, V14, P321, DOI 10.1080/02640419608727717
  17. KANEKO M, 1990, J BIOMECH, V23, P57, DOI 10.1016/0021-9290(90)90041-Z
  18. Lems S., 2009, THESIS TU DELFT
  19. Mady CEK, 2012, ENERGY, V45, P546, DOI 10.1016/j.energy.2012.02.064
  20. Mady CEK, 2013, INT J THERMODYN, V16, P73
  21. Nelson DL, 2000, LEHNINGER PRINCIPLES
  22. Prek M, 2010, INT J HEAT MASS TRAN, V48, P731
  23. Prek M, 2006, ENERGY, V31, P732, DOI 10.1016/j.energy.2005.05.001
  24. Prek M, 2005, INT J HEAT MASS TRAN, V48, P731, DOI 10.1016/j.ijheatmasstransfer.2004.09.006
  25. PRIGOGINE I, 1946, EXPERIENTIA, V2, P451, DOI 10.1007/BF02153597
  26. Rahman MA, 2007, THERM SCI, V11, P75, DOI 10.2298/TSCI0701075R
  27. Shukuya M., 2008, BUILD ENVIRON, V44, P1545
  28. Shukuya M., 2013, EXERGY THEORY APPL B
  29. Silva C, 2008, ENTROPY, V10, P100, DOI 10.3390/entropy-e10020100
  30. Silva C, 2009, J THERMODYNAMICS, V2009, P1
  31. Simone A, 2011, ENERG BUILDINGS, V43, P1, DOI 10.1016/j.enbuild.2010.08.007
  32. STOWARD PJ, 1962, NATURE, V194, P977, DOI 10.1038/194977a0
  33. Tokunaga K, 2011, BUILD ENVIRON, V46, P2220, DOI 10.1016/j.buildenv.2011.04.036
  34. WARDSMITH AJ, 1984, J BIOMECH, V17, P339, DOI 10.1016/0021-9290(84)90028-9
  35. WILLIAMS KR, 1983, J BIOMECH, V16, P115, DOI 10.1016/0021-9290(83)90035-0
  36. ZOTIN AI, 1967, J THEOR BIOL, V17, P57, DOI 10.1016/0022-5193(67)90020-3