The variability of isokinetic ankle strength is different in healthy older men and women

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ESPANA
Citação
CLINICS, v.77, article ID 100125, 5p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context: In the elderly, weak lower limb muscles impair functional tasks' performance. Objective: To evaluate the healthy elderly's ankle dorsiflexion and plantarflexion maximum torque and its variability in two sets of 5 RM isokinetics evaluation. Method: 50 women (68.0 +/- 4.6 years old) and 50 men (72.7 +/- 8.5 years old) did two sets of ankle plantar flexor and dorsiflexor isokinetic tests at 30 degrees/s. Peak torque, total work, and coefficient of variation were analyzed. Results: Men did the strongest plantarflexion torque (p < 0.05) and dorsiflexion torque (p < 0.05); their highest peak torque occurred at set 2 (p < 0.05), while the largest plantarflexion torque variability (p < 0.05), dorsiflexion torque variability (p < 0.05), and the largest plantarflexion torque variability occurred at set 1 (p < 0.05). Men did the highest plantarflexion and dorsiflexion total work (p < 0.05) at set 2 (p < 0.05). Conclusion: Older men are stronger than older women. The torque variability, in men, was higher during the first set, suggesting an adaptation to the isokinetics evaluation. Clinicians and researchers should consider that different muscles might need different numbers of sets and trials to measure their maximal muscle strength.
Palavras-chave
Isokinetic, Muscle Strength, Ankle, Sex, Aged
Referências
  1. Alonso AC, 2018, CLINICS, V73, DOI 10.6061/clinics/2018/e303
  2. Anderson M, 1997, BRIT J DEV PSYCHOL, V15, P145, DOI 10.1111/j.2044-835X.1997.tb00731.x
  3. Berciano J, 2011, J NEUROL, V258, P1594, DOI 10.1007/s00415-011-6094-x
  4. Brech GC, 2011, MATURITAS, V70, P379, DOI 10.1016/j.maturitas.2011.09.004
  5. Buldt AK, 2018, J FOOT ANKLE RES, V11, DOI 10.1186/s13047-018-0284-z
  6. Christou EA, 2011, EXERC SPORT SCI REV, V39, P77, DOI 10.1097/JES.0b013e31820b85ab
  7. Chung-Hoon K, 2015, PERCEPT MOTOR SKILL, V120, P475, DOI 10.2466/26.PMS.120v12x4
  8. Connelly DM, 2000, J GERONTOL A-BIOL, V55, pB465, DOI 10.1093/gerona/55.10.B465
  9. Ferrari GLD, 2020, REV ASSOC MED BRAS, V66, P314, DOI 10.1590/1806-9282.66.3.314
  10. Fitts P. M., 1967, HUM PERFORM
  11. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  12. Kirk EA, 2016, NEUROSCIENCE, V330, P376, DOI 10.1016/j.neuroscience.2016.05.059
  13. Klass M, 2011, EUR J APPL PHYSIOL, V111, P1909, DOI 10.1007/s00421-010-1815-x
  14. Kwan MMS, 2011, AGING CLIN EXP RES, V23, P196, DOI 10.1007/BF03324960
  15. Leyva A, 2016, J STRENGTH COND RES, V30, P141, DOI 10.1519/JSC.0000000000001083
  16. Lord SR, 2018, HAND CLINIC, V159, P157, DOI 10.1016/B978-0-444-63916-5.00010-0
  17. McCleary Robert W., 1992, Journal of Athletic Training, V27, P362
  18. Melzer Itshak, 2008, BMC Geriatr, V8, P19, DOI 10.1186/1471-2318-8-19
  19. Ofori E, 2018, J BIOMECH, V71, P111, DOI 10.1016/j.jbiomech.2018.01.032
  20. PEARSON MB, 1985, AGE AGEING, V14, P49, DOI 10.1093/ageing/14.1.49
  21. Poon C, 2011, CLIN NEUROPHYSIOL, V122, P2268, DOI 10.1016/j.clinph.2011.04.014
  22. Spink MJ, 2010, GERONTOLOGY, V56, P525, DOI 10.1159/000264655
  23. Stenroth L, 2017, MED SCI SPORT EXER, V49, P158, DOI 10.1249/MSS.0000000000001065
  24. Tsatsaki E, 2022, EUR J SPORT SCI, V22, P539, DOI 10.1080/17461391.2021.1922506
  25. van Dyk N, 2018, SCAND J MED SCI SPOR, V28, P1878, DOI 10.1111/sms.13201
  26. Webber SC, 2010, PHYS THER, V90, P1165, DOI 10.2522/ptj.20090394
  27. WOLFSON L, 1995, J GERONTOL A-BIOL, V50, P64
  28. YOUNG A, 1984, EUR J CLIN INVEST, V14, P282, DOI 10.1111/j.1365-2362.1984.tb01182.x