Exposure to wildfire-related PM2.5 and sitespecific cancer mortality in Brazil from 2010 to 2016: A retrospective study

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
YU, Pei
XU, Rongbin
LI, Shanshan
YUE, Xu
CHEN, Gongbo
YE, Tingting
SIM, Malcolm R.
ABRAMSON, Michael J.
Citação
PLOS MEDICINE, v.19, n.9, article ID e1004103, 21p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Long-term exposure to fine particles <= 2.5 mu m in diameter (PM2.5) has been linked to cancer mortality. However, the effect of wildfire-related PM2.5 exposure on cancer mortality risk is unknown. This study evaluates the association between wildfire-related PM2.5 and site-specific cancer mortality in Brazil, from 2010 to 2016. Methods and findings Nationwide cancer death records were collected during 2010-2016 from the Brazilian Mortality Information System. Death records were linked with municipal-level wildfire- and nonwildfire-related PM2.5 concentrations, at a resolution of 2.0 degrees latitude by 2.5 degrees longitude. We applied a variant difference-in-differences approach with quasi-Poisson regression, adjusting for seasonal temperature and gross domestic product (GDP) per capita. Relative risks (RRs) and 95% confidence intervals (CIs) for the exposure for specific cancer sites were estimated. Attributable fractions and cancer deaths were also calculated. In total, 1,332,526 adult cancer deaths (age >= 20 years), from 5,565 Brazilian municipalities, covering 136 million adults were included. The mean annual wildfire-related PM2.5 concentration was 2.38 mu g/m(3), and the annual non-wildfire-related PM2.5 concentration was 8.20 mu g/m(3). The RR for mortality from all cancers was 1.02 (95% CI 1.01-1.03, p< 0.001) per mu g/m(3) increase of wildfire-related PM2.5 concentration, which was higher than the RR per 1-mu g/m(3) increase of non-wildfire-related PM2.5 (1.01 [95% CI 1.00-1.01], p = 0.007, with p for difference = 0.003). Wildfire-related PM2.5 was associated with mortality from cancers of the nasopharynx (1.10 [95% CI 1.04-1.16], p = 0.002), esophagus (1.05 [95% CI 1.01-1.08], p = 0.012), stomach (1.03 [95% CI 1.01-1.06], p = 0.017), colon/rectum (1.08 [95% CI 1.05-1.11], p < 0.001), larynx (1.06 [95% CI 1.02-1.11], p = 0.003), skin (1.06 [95% CI 1.001.12], p = 0.003), breast (1.04 [95% CI 1.01-1.06], p = 0.007), prostate (1.03 [95% CI 1.011.06], p = 0.019), and testis (1.10 [95% CI 1.03-1.17], p = 0.002). For all cancers combined, the attributable deaths were 37 per 100,000 population and ranged from 18/100,000 in the Northeast Region of Brazil to 71/100,000 in the Central-West Region. Study limitations included a potential lack of assessment of the joint effects of gaseous pollutants, an inability to capture the migration of residents, and an inability to adjust for some potential confounders. Conclusions Exposure to wildfire-related PM2.5 can increase the risks of cancer mcaoprttuarlietyyofourrmmeaannyincga:Infncoetr; pleaseprovidecorrectwording: sites, and the effect for wildfire-related PM2.5 was higher than for PM2.5 from non-wildfire sources.
Palavras-chave
Referências
  1. Alves ND, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11024-3
  2. Amadeo B, 2015, AM J IND MED, V58, P437, DOI 10.1002/ajim.22434
  3. Bates MN, 2007, AM J IND MED, V50, P339, DOI 10.1002/ajim.20446
  4. Beamish LA, 2011, J CROHNS COLITIS, V5, P279, DOI 10.1016/j.crohns.2011.02.017
  5. Bigert C, 2020, INT ARCH OCC ENV HEA, V93, P197, DOI 10.1007/s00420-019-01472-x
  6. Bruce N, 2015, THORAX, V70, P433, DOI 10.1136/thoraxjnl-2014-206625
  7. Burkart KG, 2021, LANCET, V398, P685, DOI 10.1016/S0140-6736(21)01700-1
  8. Cascio WE, 2018, SCI TOTAL ENVIRON, V624, P586, DOI 10.1016/j.scitotenv.2017.12.086
  9. Casjens S, 2020, INT ARCH OCC ENV HEA, V93, P839, DOI 10.1007/s00420-020-01539-0
  10. Chen Gongbo, 2021, Lancet Planet Health, V5, pe579, DOI 10.1016/S2542-5196(21)00200-X
  11. Chen H, 2021, PART FIBRE TOXICOL, V18, DOI 10.1186/s12989-020-00394-8
  12. Coussens LM, 2002, NATURE, V420, P860, DOI 10.1038/nature01322
  13. De Toni L, 2019, FRONT ENDOCRINOL, V10, DOI 10.3389/fendo.2019.00408
  14. Deng HY, 2017, INT J CANCER, V141, P744, DOI 10.1002/ijc.30779
  15. Dong TTT, 2017, SCI TOTAL ENVIRON, V603, P268, DOI 10.1016/j.scitotenv.2017.06.062
  16. Gill JG, 2016, COLD SH Q B, V81, P163, DOI 10.1101/sqb.2016.81.030791
  17. Glass DC, 2016, OCCUP ENVIRON MED, V73, P761, DOI 10.1136/oemed-2015-103467
  18. Glass DC, 2017, OCCUP ENVIRON MED, V74, P628, DOI 10.1136/oemed-2016-104088
  19. Glass DC, 2019, OCCUP ENVIRON MED, V76, P215, DOI 10.1136/oemed-2018-105336
  20. Glencross DA, 2020, FREE RADICAL BIO MED, V151, P56, DOI 10.1016/j.freeradbiomed.2020.01.179
  21. Hu H, 2013, BREAST CANCER RES TR, V139, P217, DOI 10.1007/s10549-013-2527-9
  22. Instituto Brasileiro de Geografia e Estatistica, 2012, CENS DEM 2010 NUPC F
  23. International Agency for Research on Cancer, 2021, LIST CLASS AG CLASS, V1
  24. Jalilian H, 2019, INT J CANCER, V145, P2639, DOI 10.1002/ijc.32199
  25. Johnston FH, 2012, ENVIRON HEALTH PERSP, V120, P695, DOI 10.1289/ehp.1104422
  26. Kaatsch P, 2010, CANCER TREAT REV, V36, P277, DOI 10.1016/j.ctrv.2010.02.003
  27. Kayamba V, 2017, MALAWI MED J, V29, P212, DOI 10.4314/mmj.v29i2.25
  28. Kim Y, 2017, ECON HUM BIOL, V26, P186, DOI 10.1016/j.ehb.2017.03.006
  29. Klaunig JE, 2018, CURR PHARM DESIGN, V24, P4771, DOI 10.2174/1381612825666190215121712
  30. Kullberg C, 2018, INT ARCH OCC ENV HEA, V91, P285, DOI 10.1007/s00420-017-1276-1
  31. Kurmi OP, 2012, EUR RESPIR J, V40, P1228, DOI 10.1183/09031936.00099511
  32. Lehrer Steven, 2014, Clin Thyroidol, V26, P273
  33. Makkonen U, 2010, SCI TOTAL ENVIRON, V408, P644, DOI 10.1016/j.scitotenv.2009.10.050
  34. McDuffie E., 2021, RES REPORTS, V210
  35. Montibeller B, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-62591-x
  36. Morais Rinaldo Macedo de, 2017, Saúde debate, V41, P101, DOI 10.1590/0103-11042017s09
  37. Mota OM, 2013, SAO PAULO MED J, V131, P27, DOI 10.1590/S1516-31802013000100005
  38. Navarro KM, 2019, ENVIRON RES, V173, P462, DOI 10.1016/j.envres.2019.03.060
  39. Ou JY, 2020, CANCER EPIDEM BIOMAR, V29, P1929, DOI 10.1158/1055-9965.EPI-19-1363
  40. Petersen KKU, 2018, OCCUP ENVIRON MED, V75, P263, DOI 10.1136/oemed-2017-104660
  41. Reid CE, 2016, ENVIRON HEALTH PERSP, V124, P1334, DOI 10.1289/ehp.1409277
  42. Renzi M, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP3759
  43. Reuter S, 2010, FREE RADICAL BIO MED, V49, P1603, DOI 10.1016/j.freeradbiomed.2010.09.006
  44. Rolston KVI, 2017, INFECT DIS THER, V6, P69, DOI 10.1007/s40121-017-0146-1
  45. Roos WP, 2016, NAT REV CANCER, V16, P20, DOI 10.1038/nrc.2015.2
  46. Salgueiro-Gonzalez N, 2015, TRAC-TREND ANAL CHEM, V66, P45, DOI 10.1016/j.trac.2014.11.006
  47. Sapkota A, 2008, INT J EPIDEMIOL, V37, P321, DOI 10.1093/ije/dym261
  48. Schug TT, 2015, ENDOCRINOLOGY, V156, P1941, DOI 10.1210/en.2014-1734
  49. Schwartz J, 2021, ENVIRON RES, V194, DOI 10.1016/j.envres.2020.110649
  50. Sharma A., 2017, TUMOUR BIOL, V39, p1010428317724784, DOI [DOI 10.1177/1010428317724784, 10.1177/1010428317724784]
  51. Sheikh M, 2020, ENVIRON HEALTH PERSP, V128, DOI 10.1289/EHP5907
  52. Silva IDB, 2020, APPL SOFT COMPUT, V89, DOI 10.1016/j.asoc.2020.106075
  53. Soteriades Elpidoforos S, 2019, Asian Pac J Cancer Prev, V20, P3221, DOI 10.31557/APJCP.2019.20.11.3221
  54. Steenland K, 2021, ENVIRON RES, V194, DOI 10.1016/j.envres.2020.110690
  55. Stiller C, 2002, MED PEDIATR ONCOL, V39, P149, DOI 10.1002/mpo.10142
  56. Toloo G, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-27
  57. Verma V, 2009, ENVIRON SCI TECHNOL, V43, P954, DOI 10.1021/es8021667
  58. Wang Y, 2016, ENVIRON HEALTH PERSP, V124, P1182, DOI 10.1289/ehp.1409671
  59. Welch HG, 2000, JAMA-J AM MED ASSOC, V283, P2975, DOI 10.1001/jama.283.22.2975
  60. White AJ, 2017, ENVIRON HEALTH PERSP, V125, DOI [10.1289/EHP827, 10.1289/ehp827]
  61. Xu RB, 2020, LANCET PLANET HEALTH, V4, pE566, DOI 10.1016/S2542-5196(20)30251-5
  62. Xu RB, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003369
  63. Xu RB, 2020, NEW ENGL J MED, V383, P2173, DOI 10.1056/NEJMsr2028985
  64. Ye TT, 2021, LANCET PLANET HEALTH, V5, pE599, DOI 10.1016/S2542-5196(21)00173-X
  65. Yu P, 2022, ENVIRON POLLUT, V302, DOI 10.1016/j.envpol.2022.119070
  66. Yu P, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100143
  67. Yu WH, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003141
  68. Yue X, 2018, NAT COMMUN, V9, DOI [10.1038/s41467-018-07921-4|, 10.1038/s41467-018-07921-4]
  69. Zhao GL, 2020, ANN WORK EXPOS HEAL, V64, P614, DOI 10.1093/annweh/wxaa036