Association between ambient temperature and hospitalization for renal diseases in Brazil during 2000-2015: A nationwide case-crossover study

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
Citação
LANCET REGIONAL HEALTH-AMERICAS, v.6, article ID 100101, 13p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Climate change is increasing the risks of injuries, diseases, and deaths globally. However, the association between ambient temperature and renal diseases has not been fully characterized. This study aimed to quantify the risk and attributable burden for hospitalizations of renal diseases related to ambient temperature. Methods Daily hospital admission data from 1816 cities in Brazil were collected during 2000 and 2015. A time-stratified case-crossover design was applied to evaluate the association between temperature and renal diseases. Relative risks (RRs), attributable fractions (AFs), and their confidence intervals (CIs) were calculated to estimate the associations and attributable burden. Findings A total of 2,726,886 hospitalizations for renal diseases were recorded during the study period. For every (1) over barC increase in daily mean temperature, the estimated risk of hospitalization for renal diseases over lag 0-7 days increased by 0 center dot 9% (RR = 1 center dot 009, 95% CI: 1 center dot 008-1 center dot 010) at the national level. The associations between temperature and renal diseases were largest at lag 0 days but remained for lag 1-2 days. The risk was more prominent in females, children aged 0-4 years, and the elderly >= 80 years. 7 center dot 4% ( 95% CI: 5 center dot 2-9 center dot 6%) of hospitalizations for renal diseases could be attributable to the increase of temperature, equating to 202,093 (95% CI: 141,554- 260,594) cases. Interpretation This nationwide study provides robust evidence that more policies should be developed to prevent heat-related hospitalizations and mitigate climate change.
Palavras-chave
Temperature, hospitalization, renal disease, case-crossover study, climate change
Referências
  1. Armstrong B, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP5430
  2. Silva PAB, 2020, REV SAUDE PUBL, V54, DOI 10.11606/s1518-8787.2020054001708
  3. Barnett AG, 2010, ANAL SEASONAL HLTH D
  4. Basu R, 2012, EPIDEMIOLOGY, V23, P813, DOI 10.1097/EDE.0b013e31826b7f97
  5. Bobb JF, 2014, JAMA-J AM MED ASSOC, V312, P2659, DOI 10.1001/jama.2014.15715
  6. Borg M, 2017, ENVIRON HEALTH-GLOB, V16, DOI 10.1186/s12940-017-0331-4
  7. Buckley JP, 2014, EPIDEMIOLOGY, V25, P242, DOI 10.1097/EDE.0000000000000051
  8. Chen R, 2018, BMJ CLIN RES ED
  9. Chen TQ, 2017, ENVIRON HEALTH PERSP, V125, DOI [10.1289/ehp44, 10.1289/EHP44]
  10. Clarkson PM, 2007, SPORTS MED, V37, P361, DOI 10.2165/00007256-200737040-00022
  11. Fakheri RJ, 2011, KIDNEY INT, V79, P1178, DOI 10.1038/ki.2011.76
  12. Lima-Costa MF, 2018, AM J EPIDEMIOL, V187, P1345, DOI 10.1093/aje/kwx387
  13. Flatharta TO, 2019, BMJ EVID-BASED MED, V24, P45, DOI 10.1136/bmjebm-2018-110971
  14. Fletcher BA, 2012, AM J EPIDEMIOL, V175, P907, DOI 10.1093/aje/kwr417
  15. Green RS, 2010, INT J PUBLIC HEALTH, V55, P113, DOI 10.1007/s00038-009-0076-0
  16. Hales S., 2014, QUANTITATIVE RISK AS
  17. Hansen AL, 2008, INT J EPIDEMIOL, V37, P1359, DOI 10.1093/ije/dyn165
  18. Janes H, 2005, EPIDEMIOLOGY, V16, P717, DOI 10.1097/01.ede.0000181315.18836.9d
  19. Kim E, 2018, SCI TOTAL ENVIRON, V642, P800, DOI 10.1016/j.scitotenv.2018.06.055
  20. Kim SE, 2019, ENVIRON HEALTH-GLOB, V18, DOI 10.1186/s12940-019-0491-5
  21. Lee Woo-Seok, 2019, J Prev Med Public Health, V52, P1, DOI 10.3961/jpmph.18.149
  22. Levin A, 2017, LANCET, V390, P1888, DOI 10.1016/S0140-6736(17)30788-2
  23. Levy D, 2001, EPIDEMIOLOGY, V12, P193, DOI 10.1097/00001648-200103000-00011
  24. Li SS, 2016, ENVIRON HEALTH PERSP, V124, P1623, DOI 10.1289/EHP200
  25. Lim YH, 2018, SCI TOTAL ENVIRON, V616, P1134, DOI 10.1016/j.scitotenv.2017.10.207
  26. Lo LJ, 2009, KIDNEY INT, V76, P893, DOI 10.1038/ki.2009.289
  27. Luyckx VA, 2018, B WORLD HEALTH ORGAN, V96, P414, DOI 10.2471/BLT.17.206441
  28. Paim J, 2011, LANCET, V377, P1778, DOI 10.1016/S0140-6736(11)60054-8
  29. Roncal-Jimenez C, 2015, ANN NUTR METAB, V66, P10, DOI 10.1159/000381239
  30. Schmidt MI, 2011, LANCET, V377, P1949, DOI 10.1016/S0140-6736(11)60135-9
  31. Sera F, 2019, INT J EPIDEMIOL, V48, P1101, DOI 10.1093/ije/dyz008
  32. Simmering JE, 2021, J UROLOGY, V205, P500, DOI 10.1097/JU.0000000000001383
  33. Sorensen C, 2019, NEW ENGL J MED, V381, P693, DOI 10.1056/NEJMp1907859
  34. Stanaway JD, 2018, LANCET, V392, P1923, DOI 10.1016/s0140-6736(18)32225-6
  35. Wang XM, 2019, STAT METHODS MED RES, V28, P3100, DOI 10.1177/0962280218797145
  36. Williams S, 2012, SCI TOTAL ENVIRON, V414, P126, DOI 10.1016/j.scitotenv.2011.11.038
  37. Wu MC, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239723
  38. Wu Y, 2021, HLTH DATA SCI, V2021
  39. Wu Y, 2021, THORAX, V76, P962, DOI 10.1136/thoraxjnl-2020-216549
  40. Xavier AC, 2016, INT J CLIMATOL, V36, P2644, DOI 10.1002/joc.4518
  41. Xu RB, 2020, LANCET PLANET HEALTH, V4, pE566, DOI 10.1016/S2542-5196(20)30251-5
  42. Xu RB, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003369
  43. Xu RB, 2020, ENVIRON INT, V143, DOI 10.1016/j.envint.2020.105992
  44. Xu RB, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP5688
  45. Xu RB, 2019, PLOS MED, V16, DOI 10.1371/journal.pmed.1002950
  46. Zhao Q, 2020, INNOVATION-AMSTERDAM, V1, DOI 10.1016/j.xinn.2020.04.013
  47. Zhao Q, 2019, ENVIRON HEALTH PERSP, V127, DOI [10.1289/EHP3889, 10.1289/ehp3889]
  48. Zhao Q, 2018, ENVIRON INT, V120, P345, DOI 10.1016/j.envint.2018.08.021
  49. Zou ZY, 2020, CIRCULATION, V141, P790, DOI 10.1161/CIRCULATIONAHA.119.042864