COVID-19: Understanding the impact of anti-hypertensive drugs and hydroxychloroquine on the ACE1 and ACE2 in lung and adipose tissue in SHR and WKY rats

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
PHYSIOLOGICAL REPORTS, v.11, n.3, article ID e15598, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Hypertensive individuals taking anti-hypertensive drugs from renin-angiotensin system inhibitors may exhibit a more severe evolution of the disease when contracting the SARS-CoV-2 virus (COVID-19 disease) due to potential increases in ACE2 expression. The study investigated ACE1 and ACE2 axes and hydroxychloroquine in the lungs and adipose tissue of male and female normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). SHRs were treated with losartan (10 mg/kg/day) or captopril (10 mg/kg/day) for 14 days or 7 days with hydroxychloroquine (200 mg/kg/day) in drinking water. WKY rats were also treated for 7 days with hydroxychloroquine. Blood pressure (BP), protein, and mRNA expression of ACE1 and ACE2 were analyzed in serum, adipose, and lung tissues. Losartan and captopril reduced BP in both sexes in SHR, whereas hydroxychloroquine increased BP in WKY rats. Losartan reduced ACE2 in serum and lungs in both sexes and in adipose tissue of male SHRs. Captopril decreased ACE2 protein in the lung of females and in adipose tissue in both sexes of SHRs. Hydroxychloroquine decreased ACE1 and ACE2 proteins in the lungs in both sexes and adipose tissue in male SHRs. In female WKY rats, ACE2 protein was lower only in the lungs and adipose tissue. Losartan effectively inhibited ACE2 in male and captopril in female SHRs. Hydroxychloroquine inhibited ACE2 in male SHRs and female WKY rats. These results further our understanding of the ACE2 mechanism in patients under renin-angiotensin anti-hypertensive therapy and in many trials using hydroxychloroquine for COVID-19 treatment and potential sex differences in response to drug treatment.
Palavras-chave
ACE2, COVID-19, hydroxychloroquine, lung tissue, spontaneously hypertensive rat
Referências
  1. Alexandre J, 2020, ANN ENDOCRINOL-PARIS, V81, P63, DOI 10.1016/j.ando.2020.04.005
  2. Argyropoulos KV, 2020, AM J PATHOL, V190, P1881, DOI 10.1016/j.ajpath.2020.07.001
  3. Baker JF, 2018, JCR-J CLIN RHEUMATOL, V24, P203, DOI 10.1097/RHU.0000000000000736
  4. Bavishi C, 2016, PROG CARDIOVASC DIS, V59, P253, DOI 10.1016/j.pcad.2016.10.002
  5. Chen Z., 2020, medRxiv, DOI [10.1101/2020.03.22.20040758, DOI 10.1101/2020.03.22.20040758]
  6. Devaux CA, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105938
  7. Ferrario CM, 2005, KIDNEY INT, V68, P2189, DOI 10.1111/j.1523-1755.2005.00675.x
  8. Gao JJ, 2020, BIOSCI TRENDS, V14, P72, DOI 10.5582/bst.2020.01047
  9. Garcia-Albeniz X, 2022, EUR J EPIDEMIOL, V37, P789, DOI 10.1007/s10654-022-00891-4
  10. Gautret P, 2020, INT J ANTIMICROB AG, V56, DOI 10.1016/j.ijantimicag.2020.105949
  11. Gautret P, 2020, TRAVEL MED INFECT DI, V34, DOI 10.1016/j.tmaid.2020.101663
  12. Gbinigie Kome, 2020, BJGP Open, V4, DOI 10.3399/bjgpopen20X101069
  13. Gebhard C, 2020, BIOL SEX DIFFER, V11, DOI 10.1186/s13293-020-00304-9
  14. Gembardt F, 2005, PEPTIDES, V26, P1270, DOI 10.1016/j.peptides.2005.01.009
  15. Gemmati D, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21103474
  16. Gomez-Guzman M, 2014, HYPERTENSION, V64, P330, DOI 10.1161/HYPERTENSIONAHA.114.03587
  17. Hamming I, 2004, J PATHOL, V203, P631, DOI 10.1002/path.1570
  18. Horby P, 2020, NEW ENGL J MED, V383, P2030, DOI 10.1056/NEJMoa2022926
  19. Ingraham NE, 2020, EUR RESPIR J, V56, DOI 10.1183/13993003.00912-2020
  20. Jackson CB, 2022, NAT REV MOL CELL BIO, V23, P3, DOI 10.1038/s41580-021-00418-x
  21. Jia HP, 2005, J VIROL, V79, P14614, DOI 10.1128/JVI.79.23.14614-14621.2005
  22. Kristek F, 2013, GEN PHYSIOL BIOPHYS, V32, P235, DOI 10.4149/gpb_2013025
  23. Liu YX, 2020, SCI CHINA LIFE SCI, V63, P364, DOI 10.1007/s11427-020-1643-8
  24. Milne S, 2020, LANCET RESP MED, V8, pE50, DOI 10.1016/S2213-2600(20)30224-1
  25. Mourosi JT, 2022, INFECT GENET EVOL, V103, DOI 10.1016/j.meegid.2022.105338
  26. Nina PB, 2020, INDIAN J PUBLIC HLTH, V64, P125, DOI 10.4103/ijph.IJPH_496_20
  27. Nunez E, 1997, HYPERTENSION, V29, P519, DOI 10.1161/01.HYP.29.1.519
  28. Reese T, 2019, LUPUS, V28, P954, DOI 10.1177/0961203319856988
  29. Ryan PM, 2020, OBESITY, V28, P1191, DOI 10.1002/oby.22843
  30. Sabri S, 2021, WORLD J DIABETES, V12, P1674, DOI 10.4239/wjd.v12.i10.1674
  31. Sanders JM, 2020, JAMA-J AM MED ASSOC, V323, P1824, DOI 10.1001/jama.2020.6019
  32. Sinha N, 2020, POSTGRAD MED J, V96, P550, DOI 10.1136/postgradmedj-2020-137785
  33. Sommerstein R, 2020, BMJ-BRIT MED J, DOI [10.1136/bmj.m810, DOI 10.1136/BMJ.M810]
  34. Watkins J, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m810
  35. WHO, 2010, EM DIS NOV COR 2019
  36. Wu JM, 2022, CRIT REV FOOD SCI, V62, P783, DOI [10.1080/10408398.2020.1828813, 10.1038/s41591-020-0822-7]
  37. Yang J, 2020, INT J INFECT DIS, V94, P91, DOI 10.1016/j.ijid.2020.03.017
  38. Yao XT, 2020, CLIN INFECT DIS, V71, P732, DOI 10.1093/cid/ciaa237
  39. Yazdany J, 2020, ANN INTERN MED, V172, P754, DOI 10.7326/M20-1334
  40. Zhou D, 2020, J ANTIMICROB CHEMOTH, V75, P1667, DOI 10.1093/jac/dkaa114
  41. Zhou F, 2020, LANCET, V395, P1054, DOI 10.1016/S0140-6736(20)30566-3