Immunodominant antibody responses directed to SARS-CoV-2 hotspot mutation sites and risk of immune escape

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN IMMUNOLOGY, v.13, article ID 1010105, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IntroductionConsidering the likely need for the development of novel effective vaccines adapted to emerging relevant CoV-2 variants, the increasing knowledge of epitope recognition profile among convalescents and afterwards vaccinated with identification of immunodominant regions may provide important information. MethodsWe used an RBD peptide microarray to identify IgG and IgA binding regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals. ResultsWe found a set of immunodominant RBD antibody epitopes, each recognized by more than 30% of the tested cohort, that differ among the two different groups and are within conserved regions among betacoronavirus. Of those, only one peptide, P44 (S415-429), recognized by 68% of convalescents, presented IgG and IgA antibody reactivity that positively correlated with nAb titers, suggesting that this is a relevant RBD region and a potential target of IgG/IgA neutralizing activity. DiscussionThis peptide is localized within the area of contact with ACE-2 and harbors the mutation hotspot site K417 present in gamma (K417T), beta (K417N), and omicron (K417N) variants of concern. The epitope profile of vaccinated individuals differed from convalescents, with a more diverse repertoire of immunodominant peptides, recognized by more than 30% of the cohort. Noteworthy, immunodominant regions of recognition by vaccinated coincide with mutation sites at Omicron BA.1, an important variant emerging after massive vaccination. Together, our data show that immune pressure induced by dominant antibody responses may favor hotspot mutation sites and the selection of variants capable of evading humoral response.
Palavras-chave
linear antibody epitopes, peptide array, RBD, immune pressure, sarbecovirus, betacoronavirus
Referências
  1. Cameroni E, 2022, NATURE, V602, P664, DOI [10.1038/s41586-021-04386-2, 10.1101/2021.12.12.472269]
  2. Cao Y, 2022, bioRxiv, DOI [10.1101/2022.09.15.507787, DOI 10.1101/2022.09.15.507787]
  3. Cao Y, 2021, NUMER LINEAR ALGEBR, V28, DOI [10.1002/nla.2362, 10.1038/s41586-021-04385-3]
  4. Chen RTE, 2021, NAT MED, V27, DOI 10.1038/s41591-021-01294-w
  5. Crooks GE, 2004, GENOME RES, V14, P1188, DOI 10.1101/gr.849004
  6. DAVENPORT FM, 1953, J EXP MED, V98, P641, DOI 10.1084/jem.98.6.641
  7. De Santis GC, 2021, HEMATOL TRANSF CELL, V43, P212, DOI [10.1016/j.htct.2021.03.001, 10.1016/j.htct.2021.03.0012531-1379/]
  8. Dupont L, 2021, NAT MICROBIOL, V6, P1433, DOI 10.1038/s41564-021-00974-0
  9. Edgar RC, 2004, BMC BIOINFORMATICS, V5, P1, DOI 10.1186/1471-2105-5-113
  10. Garcia-Beltran WF, 2021, CELL, V184, P2372, DOI [10.1016/j.cell.2021.03.013, 10.1016/j.cell.2021.04.006, 10.1101/2021.02.14.21251704]
  11. Gattinger P, 2022, ALLERGY, V77, P230, DOI 10.1111/all.15066
  12. Greaney AJ, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-24435-8
  13. Hansen J, 2020, SCIENCE, V369, P1010, DOI 10.1126/science.abd0827
  14. Harvey WT, 2021, NAT REV MICROBIOL, V19, P409, DOI 10.1038/s41579-021-00573-0
  15. Huang Y, 2020, ACTA PHARMACOL SIN, V41, P1141, DOI 10.1038/s41401-020-0485-4
  16. Jespersen MC, 2017, NUCLEIC ACIDS RES, V45, pW24, DOI 10.1093/nar/gkx346
  17. Ju B, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-34400-8
  18. Lee IJ, 2022, J BIOMED SCI, V29, DOI 10.1186/s12929-022-00830-1
  19. Li Y, 2021, CELL REP, V34, DOI 10.1016/j.celrep.2021.108915
  20. Li Y, 2020, CELL MOL IMMUNOL, V17, P1095, DOI 10.1038/s41423-020-00523-5
  21. Liu Y, 2021, NEW ENGL J MED, V384, P1466, DOI 10.1056/NEJMc2102017
  22. Nitahara Y, 2021, MICROBIOL SPECTR, V9, DOI 10.1128/Spectrum.00965-21
  23. Niu L, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.647934
  24. Pettersen EF, 2004, J COMPUT CHEM, V25, P1605, DOI 10.1002/jcc.20084
  25. Piccoli L, 2020, CELL, V183, P1024, DOI 10.1016/j.cell.2020.09.037
  26. Shrock E, 2020, SCIENCE, V370, P1058, DOI 10.1126/science.abd4250
  27. Tai WB, 2020, CELL MOL IMMUNOL, V17, P613, DOI 10.1038/s41423-020-0400-4
  28. Wall EC, 2021, LANCET, V397, P2331, DOI 10.1016/S0140-6736(21)01290-3
  29. Wang PF, 2021, NATURE, V593, P130, DOI 10.1038/s41586-021-03398-2
  30. Wang Q, 2022, BIORXIV, DOI [10.1084/jem.98.6.641, DOI 10.1084/JEM.98.6.641]
  31. Wang RK, 2021, IMMUNITY, V54, P1611, DOI 10.1016/j.immuni.2021.06.003
  32. Wang YJ, 2020, P NATL ACAD SCI USA, V117, P13967, DOI 10.1073/pnas.2008209117
  33. Wang ZJ, 2021, NATURE, V592, P616, DOI [10.1038/s41586-021-03324-6, 10.1101/2021.01.15.426911]
  34. Wendel S, 2020, TRANSFUSION, V60, P2938, DOI 10.1111/trf.16065
  35. Wu Y, 2020, SCIENCE, V368, P1274, DOI 10.1126/science.abc2241
  36. Yi ZG, 2020, EMERG MICROBES INFEC, V9, P1988, DOI 10.1080/22221751.2020.1815591
  37. Yoshida S, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-85202-9