Global multi-center and multi-modal magnetic resonance imaging study of obsessive-compulsive disorder: Harmonization and monitoring of protocols in healthy volunteers and phantoms

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
POUWELS, Petra J. W.
VRIEND, Chris
LIU, Feng
JOODE, Niels T. de
ROBERTSON, Frances C.
VENKATASUBRAMANIAN, Ganesan
IPSER, Jonathan
LEE, Seonjoo
Citação
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, v.32, n.1, article ID e1931, 18p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives We describe the harmonized MRI acquisition and quality assessment of an ongoing global OCD study, with the aim to translate representative, well-powered neuroimaging findings in neuropsychiatric research to worldwide populations. Methods We report on T1-weighted structural MRI, resting-state functional MRI, and multi-shell diffusion-weighted imaging of 140 healthy participants (28 per site), two traveling controls, and regular phantom scans. Results Human image quality measures (IQMs) and outcome measures showed smaller within-site variation than between-site variation. Outcome measures were less variable than IQMs, especially for the traveling controls. Phantom IQMs were stable regarding geometry, SNR, and mean diffusivity, while fMRI fluctuation was more variable between sites. Conclusions Variation in IQMs persists, even for an a priori harmonized data acquisition protocol, but after pre-processing they have less of an impact on the outcome measures. Continuous monitoring IQMs per site is valuable to detect potential artifacts and outliers. The inclusion of both cases and healthy participants at each site remains mandatory.
Palavras-chave
DWI, fMRI, image quality measure, multi-vendor, structural MRI
Referências
  1. Afyouni S, 2018, NEUROIMAGE, V172, P291, DOI 10.1016/j.neuroimage.2017.12.098
  2. Allen Micah, 2019, Wellcome Open Res, V4, P63, DOI 10.12688/wellcomeopenres.15191.1
  3. Andersson JLR, 2016, NEUROIMAGE, V125, P1063, DOI 10.1016/j.neuroimage.2015.10.019
  4. Atkinson D, 1997, IEEE T MED IMAGING, V16, P903, DOI 10.1109/42.650886
  5. Bach M, 2014, NEUROIMAGE, V100, P358, DOI 10.1016/j.neuroimage.2014.06.021
  6. Bastiani M, 2019, NEUROIMAGE, V184, P801, DOI 10.1016/j.neuroimage.2018.09.073
  7. Belli G, 2016, J MAGN RESON IMAGING, V43, P213, DOI 10.1002/jmri.24956
  8. Caruyer Emmanuel, 2013, Magn Reson Med, V69, P1534, DOI 10.1002/mrm.24736
  9. Casey BJ, 2018, DEV COGN NEUROS-NETH, V32, P43, DOI 10.1016/j.dcn.2018.03.001
  10. Chenevert TL, 2011, J MAGN RESON IMAGING, V34, P983, DOI 10.1002/jmri.22363
  11. Dale AM, 1999, NEUROIMAGE, V9, P179, DOI 10.1006/nimg.1998.0395
  12. Esteban O, 2019, NAT METHODS, V16, P111, DOI 10.1038/s41592-018-0235-4
  13. Esteban O, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184661
  14. Fortin JP, 2018, NEUROIMAGE, V167, P104, DOI 10.1016/j.neuroimage.2017.11.024
  15. Fortin JP, 2017, NEUROIMAGE, V161, P149, DOI 10.1016/j.neuroimage.2017.08.047
  16. Friedman L, 2006, J MAGN RESON IMAGING, V23, P827, DOI 10.1002/jmri.20583
  17. Ganzetti M, 2016, FRONT NEUROINFORM, V10, DOI 10.3389/fninf.2016.00010
  18. Hua K, 2008, NEUROIMAGE, V39, P336, DOI 10.1016/j.neuroimage.2007.07.053
  19. Klasson N., 2018, EUR RADIOL EXP, V2, P24, DOI [10.1186/s41747-018-0055-4, DOI 10.1186/S41747-018-0055-4]
  20. Magnotta VA, 2006, J DIGIT IMAGING, V19, P140, DOI 10.1007/s10278-006-0264-x
  21. Pasternak O, 2012, LECT NOTES COMPUT SC, V7511, P305, DOI 10.1007/978-3-642-33418-4_38
  22. Radua J, 2020, NEUROIMAGE, V218, DOI 10.1016/j.neuroimage.2020.116956
  23. Simpson HB, 2020, BMC PSYCHIATRY, V20, DOI 10.1186/s12888-020-2439-2
  24. Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
  25. Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024
  26. Sotiropoulos SN, 2013, NEUROIMAGE, V80, P125, DOI 10.1016/j.neuroimage.2013.05.057
  27. Stein DJ, 2019, NAT REV DIS PRIMERS, V5, DOI 10.1038/s41572-019-0102-3
  28. Szeker S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0236531
  29. Thompson PM, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-0705-1
  30. van den Heuvel OA, 2022, HUM BRAIN MAPP, V43, P23, DOI 10.1002/hbm.24972
  31. Vovk U, 2007, IEEE T MED IMAGING, V26, P405, DOI 10.1109/TMI.2006.891486
  32. Wang Y, 2011, NEUROIMAGE, V55, P1577, DOI 10.1016/j.neuroimage.2011.01.038
  33. Weiner MW, 2017, ALZHEIMERS DEMENT, V13, P561, DOI 10.1016/j.jalz.2016.10.006
  34. Weisskoff RM, 1996, MAGN RESON MED, V36, P643, DOI 10.1002/mrm.1910360422
  35. Yeo BTT, 2011, J NEUROPHYSIOL, V106, P1125, DOI 10.1152/jn.00338.2011
  36. Yu MC, 2018, HUM BRAIN MAPP, V39, P4213, DOI 10.1002/hbm.24241
  37. Zhang H, 2006, MED IMAGE ANAL, V10, P764, DOI 10.1016/j.media.2006.06.004
  38. Zhang H, 2012, NEUROIMAGE, V61, P1000, DOI 10.1016/j.neuroimage.2012.03.072