1H NMR Metabolomics and Lipidomics To Monitor Positive Responses in Children with Autism Spectrum Disorder Following a Guided Parental Intervention: A Pilot Study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER CHEMICAL SOC
Autores
CORREIA, Banny Silva Barbosa
PONTES, Joao Guilherme de Moraes
NANI, Joao Victor Silva
VILLALTA, Fabian
MOR, Natalia Cristina
BORDINI, Daniela
BRUNONI, Decio
MARI, Jair Jesus
HAYASHI, Mirian A. F.
Citação
ACS CHEMICAL NEUROSCIENCE, v.14, n.6, p.1137-1145, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by patients displaying at least two out of the classical symptoms, such as impaired social communication, impaired interactions, and restricted repeti t i v e behavior. Early parent-mediated interventions, such as video modeling for parental training, were demonstrated to be a successf u l low-cost way to del i v e r care for children with ASD. Nuclear magnetic resonance (NMR)-based metabolomics/lipidomics has been success-fully employed in several mental disorder studies. Metabolomics and lipidomics of 37 ASD patients (children, aged 3-8 years), who were divided into two groups, one control group with no parental-training intervention (N = 18) and the other in which the parents were trained by a video modeling intervention (ASD parental training, N = 19), were analyzed by proton NMR spectroscopy. Patients in the ASD parental-training group sera were seen to have increased glucose, myo-inositol, malonate, prol i n e , phenylalanine, and gangliosides in their blood ser u m , while cholesterol, choline, and lipids were decreased, compared to the control group, who received no parental-training. Taken together, we demonstrated here significant changes in serum metabolites and lipids in ASD children, previously demonstrated to show clinical positive efl'ects following a parental training intervention based on video modeling, delivered over 22 weeks. We demonstrate the value of applying metabolomics and lipidomics to identify potential biomarkers for clinical interventions follow-up in ASD.
Palavras-chave
Metabolomics, lipidomics, autism, NMR spectroscopy, parental training
Referências
  1. Adler BA, 2015, AUTISM, V19, P102, DOI 10.1177/1362361314524641
  2. American Psychiatric Association, 2013, DIAGN STAT MAN MENT, DOI [10.1176/appi.books.9780890425596, DOI 10.1176/APPI.BOOKS.9780890425596]
  3. Bagaiolo LF, 2017, AUTISM, V21, P603, DOI 10.1177/1362361316677718
  4. Beaudoin A. J., 2014, AUTISM RES TREATMENT, V2014
  5. Becker MM, 2012, ARQ NEURO-PSIQUIAT, V70, P185, DOI 10.1590/S0004-282X2012000300006
  6. Bordini D, 2020, J INTELL DISABIL RES, V64, P629, DOI 10.1111/jir.12759
  7. Cervenka I, 2017, SCIENCE, V357, DOI 10.1126/science.aaf9794
  8. Chaste Pauline, 2012, Dialogues Clin Neurosci, V14, P281
  9. Churchward MA, 2018, MOL NEUROBIOL, V55, P1477, DOI 10.1007/s12035-017-0422-9
  10. Costa TBBC, 2019, J PROTEOME RES, V18, P341, DOI 10.1021/acs.jproteome.8b00646
  11. Ford TC, 2016, FRONT MOL NEUROSCI, V9, DOI 10.3389/fnmol.2016.00014
  12. Goritz C, 2002, J PHYSIOLOGY-PARIS, V96, P257, DOI 10.1016/S0928-4257(02)00014-1
  13. Graham SF, 2020, METABOLOMICS, V16, DOI 10.1007/s11306-020-01685-z
  14. Hoirisch-Clapauch S, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0370-4
  15. Honda A, 2009, J LIPID RES, V50, P2124, DOI 10.1194/jlr.D800054-JLR200
  16. Innis SM, 2000, DEV NEUROSCI-BASEL, V22, P474, DOI 10.1159/000017478
  17. Karino CA, 2011, PSICOL-REFLEX CRIT, V24, P621, DOI 10.1590/S0102-79722011000400001
  18. Liang YJ, 2020, MED SCI MONITOR, V26, DOI 10.12659/MSM.926634
  19. Lord C, 2018, LANCET, V392, P508, DOI 10.1016/S0140-6736(18)31129-2
  20. MURAKAMI Y, 2019, SCI REP-UK, V9
  21. Piven J, 2017, MOL PSYCHIATR, V22, P1385, DOI 10.1038/mp.2017.131
  22. Pontes JGM, 2017, ANAL METHODS-UK, V9, P1078, DOI [10.1039/c6ay03102a, 10.1039/C6AY03102A]
  23. Postorino V, 2017, CLIN CHILD FAM PSYCH, V20, P391, DOI 10.1007/s10567-017-0237-2
  24. Sanders SJ, 2011, NEURON, V70, P863, DOI 10.1016/j.neuron.2011.05.002
  25. Savino R, 2020, BRAIN SCI, V10, DOI 10.3390/brainsci10090631
  26. Shin SY, 2014, NAT GENET, V46, P543, DOI 10.1038/ng.2982
  27. Shinohe A, 2006, PROG NEURO-PSYCHOPH, V30, P1472, DOI 10.1016/j.pnpbp.2006.06.013
  28. Sipione S, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.572965
  29. Sosic-Vasic Z, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00472
  30. Tamiji J, 2010, NEUROSIGNALS, V18, P98, DOI 10.1159/000323189
  31. Tasic L, 2019, J PSYCHIATR RES, V119, P67, DOI 10.1016/j.jpsychires.2019.09.009
  32. Toczylowska B, 2022, MOL NEUROBIOL, V59, P5452, DOI 10.1007/s12035-022-02912-5
  33. Tukiainen T, 2008, BIOCHEM BIOPH RES CO, V375, P356, DOI 10.1016/j.bbrc.2008.08.007
  34. Voineagu I, 2011, NATURE, V474, P380, DOI 10.1038/nature10110
  35. Wang HS, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00104
  36. Wong C., 2014, COMPREHENSIVE GUIDE, P1259, DOI [DOI 10.1007/978-1-4614-4788-7_68, 10.1007/978-1-4614-4788-7_68]
  37. Worley B, 2016, CURR METABOL, V4, P97, DOI 10.2174/2213235X04666160613122429
  38. Yang XL, 2018, BRAIN RES, V1678, P273, DOI 10.1016/j.brainres.2017.10.027
  39. Yao AKK, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.859249
  40. Yu X, 2022, ENVIRON RES, V208, DOI 10.1016/j.envres.2021.112590
  41. Zheng HF, 2017, AMINO ACIDS, V49, P57, DOI 10.1007/s00726-016-2332-y