Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
CORTESE, Samuele
SOLMI, Marco
MICHELINI, Giorgia
BELLATO, Alessio
BLANNER, Christina
CANOZZI, Andrea
EUDAVE, Luis
HOJLUND, Mikkel
KOHLER-FORSBERG, Ole
Citação
WORLD PSYCHIATRY, v.22, n.1, p.129-149, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Neurodevelopmental disorders - including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders - manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence - from two or more studies from independent research groups, with results going into the same direction - of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.
Palavras-chave
Biological markers, neurodevelopmental disorders, ADHD, autism spectrum disorder, communication disorders, intellectual disabil-ity, motor disorders, specific learning disorders, tic disorders, genome-wide association studies, neuroimaging, neurophysiology
Referências
  1. Abi-Dargham A, 2016, NAT MED, V22, P1248, DOI 10.1038/nm.4190
  2. Almeida D, 2016, CURR PSYCHIAT REP, V18, DOI 10.1007/s11920-016-0736-8
  3. Anderson MP, 2021, ARCH PATHOL LAB MED, V145, P494, DOI 10.5858/arpa.2020-0164-RA
  4. Astle DE, 2022, J CHILD PSYCHOL PSYC, V63, P397, DOI 10.1111/jcpp.13481
  5. Bellato A, 2021, NEUROSCI BIOBEHAV R, V131, P964, DOI 10.1016/j.neubiorev.2021.10.018
  6. Boksa P, 2013, J PSYCHIATR NEUROSCI, V38, P75, DOI 10.1503/jpn.130018
  7. Brannan C, 2019, AM J MED GENET B, V180, P159, DOI 10.1002/ajmg.b.32629
  8. Charman T, 2017, MOL AUTISM, V8, DOI 10.1186/s13229-017-0145-9
  9. Correll CU, 2021, WORLD PSYCHIATRY, V20, P244, DOI 10.1002/wps.20881
  10. Demontis D, 2019, NAT GENET, V51, P63, DOI 10.1038/s41588-018-0269-7
  11. Dwyer P, 2020, MOL AUTISM, V11, DOI 10.1186/s13229-020-00352-3
  12. El-Ansary A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0227626
  13. Fairchild G, 2019, NAT REV DIS PRIMERS, V5, DOI 10.1038/s41572-019-0095-y
  14. Fetit R, 2021, NEUROSCI BIOBEHAV R, V129, P35, DOI 10.1016/j.neubiorev.2021.07.014
  15. First M., CONSENSUS REPORT APA
  16. Fusar-Poli P, 2019, WORLD PSYCHIATRY, V18, P192, DOI 10.1002/wps.20631
  17. Gidziela A., 2022, MEDRXIV, DOI [10.1101/2022.02.17.22271089, DOI 10.1101/2022.02.17.22271089]
  18. Godoy PBG, 2022, BRAZ J PSYCHIAT, V44, P532, DOI 10.47626/1516-4446-2021-2222
  19. Grove Jakob, 2019, Nat Genet, V51, P431, DOI 10.1038/s41588-019-0344-8
  20. Groves AR, 2011, NEUROIMAGE, V54, P2198, DOI 10.1016/j.neuroimage.2010.09.073
  21. Hobson H, 2021, MOL PSYCHIATR, V26, P7100, DOI 10.1038/s41380-021-01226-7
  22. Hollis C, 2018, J CHILD PSYCHOL PSYC, V59, P1298, DOI 10.1111/jcpp.12921
  23. Holz NE, 2022, PSYCHOL MED, DOI 10.1017/S003329172200068X
  24. Hu XZ, 2022, CANCERS, V14, DOI 10.3390/cancers14133181
  25. Ioannidis JPA, 2007, CLIN TRIALS, V4, P245, DOI 10.1177/1740774507079441
  26. Ip HF, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-021-01480-x
  27. Juarez-Martinez Erika L, 2023, Biol Psychiatry Cogn Neurosci Neuroimaging, V8, P251, DOI 10.1016/j.bpsc.2021.08.009
  28. Kamp-Becker I, 2018, EUR CHILD ADOLES PSY, V27, P1193, DOI 10.1007/s00787-018-1143-y
  29. Kapczinski F, 2008, NEUROSCI BIOBEHAV R, V32, P675, DOI 10.1016/j.neubiorev.2007.10.005
  30. Kapur S, 2012, MOL PSYCHIATR, V17, P1174, DOI 10.1038/mp.2012.105
  31. Karalunas SL, 2020, BIOL PSYCHIAT, V88, P103, DOI 10.1016/j.biopsych.2019.11.002
  32. Karcher NR, 2021, BIOL PSYCHIAT-COGN N, V6, P508, DOI 10.1016/j.bpsc.2020.09.008
  33. Kato H, 2022, J HUM GENET, DOI 10.1038/s10038-022-01059-4
  34. Kim JH, 2020, LANCET PSYCHIAT, V7, P955, DOI 10.1016/S2215-0366(20)30312-6
  35. Kim JY, 2019, LANCET PSYCHIAT, V6, P590, DOI 10.1016/S2215-0366(19)30181-6
  36. Kirkpatrick RH, 2021, J PSYCHIATR RES, V143, P572, DOI 10.1016/j.jpsychires.2020.11.023
  37. Kotov R, 2020, WORLD PSYCHIATRY, V19, P151, DOI 10.1002/wps.20730
  38. Krueger RF, 2021, WORLD PSYCHIATRY, V20, P171, DOI 10.1002/wps.20844
  39. Kuntsi J, 2006, PSYCHOL MED, V36, P1613, DOI 10.1017/S0033291706008580
  40. Kushki A, 2021, CEREB CORTEX, V31, P5067, DOI 10.1093/cercor/bhab142
  41. Loo SK, 2018, J CHILD PSYCHOL PSYC, V59, P223, DOI 10.1111/jcpp.12814
  42. Loth E, 2021, PLOS COMPUT BIOL, V17, DOI 10.1371/journal.pcbi.1009477
  43. Lukito S, 2020, PSYCHOL MED, V50, P894, DOI 10.1017/S0033291720000574
  44. Lutz W, 2021, WORLD PSYCHIATRY, V20, P380, DOI 10.1002/wps.20888
  45. MacQueen GM, 2019, J PSYCHIATR NEUROSCI, V44, P222, DOI 10.1503/jpn.180036
  46. Maj M, 2021, WORLD PSYCHIATRY, V20, P4, DOI 10.1002/wps.20809
  47. Marquand AF, 2019, MOL PSYCHIATR, V24, P1415, DOI 10.1038/s41380-019-0441-1
  48. McGorry P, 2014, WORLD PSYCHIATRY, V13, P211, DOI 10.1002/wps.20144
  49. McIntyre RS, 2022, WORLD PSYCHIATRY, V21, P364, DOI 10.1002/wps.20997
  50. Michelini G, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0593-4
  51. Michelini G, 2021, J ATTEN DISORD, V25, P91, DOI 10.1177/1087054718771191
  52. Nudel R, 2014, GENES BRAIN BEHAV, V13, P418, DOI 10.1111/gbb.12127
  53. Onitsuka T, 2022, PSYCHIAT CLIN NEUROS, V76, P1, DOI 10.1111/pcn.13311
  54. Pagan C, 2014, TRANSL PSYCHIAT, V4, DOI 10.1038/tp.2014.120
  55. Page MJ, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003583
  56. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906]
  57. Paulus MP, 2019, JAMA PSYCHIAT, V76, P353, DOI 10.1001/jamapsychiatry.2018.4540
  58. Pulini AA, 2019, BIOL PSYCHIAT-COGN N, V4, P108, DOI 10.1016/j.bpsc.2018.06.003
  59. Rademaker MC, 2018, HAND CLINIC, V150, P3, DOI 10.1016/B978-0-444-63639-3.00001-3
  60. Rovira P, 2020, NEUROPSYCHOPHARMACOL, V45, P1617, DOI 10.1038/s41386-020-0664-5
  61. Ruisch IH, 2019, EUR ARCH PSY CLIN N, V269, P741, DOI 10.1007/s00406-018-0964-5
  62. Garcia-Gutierrez MS, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00432
  63. Sanders SJ, 2015, NEURON, V87, P1215, DOI 10.1016/j.neuron.2015.09.016
  64. Sanislow CA, 2020, WORLD PSYCHIATRY, V19, P311, DOI 10.1002/wps.20800
  65. Satterstrom FK, 2020, CELL, V180, P568, DOI 10.1016/j.cell.2019.12.036
  66. Scassellati C, 2012, J AM ACAD CHILD PSY, V51, P1003, DOI 10.1016/j.jaac.2012.08.015
  67. Shic F, 2022, MOL AUTISM, V13, DOI 10.1186/s13229-021-00482-2
  68. Silver Spring (MD) Food and Drug Administration (US) Bethesda (MD) National Institutes of Health (US), 2016, BEST BIOMARKERS ENDP
  69. Solmi M, 2022, MOL PSYCHIATR, V27, P4172, DOI 10.1038/s41380-022-01630-7
  70. Solmi M, 2022, MOL PSYCHIATR, V27, P281, DOI 10.1038/s41380-021-01161-7
  71. Solmi M, 2020, WORLD PSYCHIATRY, V19, P214, DOI 10.1002/wps.20765
  72. Stein DJ, 2021, WORLD PSYCHIATRY, V20, P336, DOI 10.1002/wps.20919
  73. Taylor MJ, 2019, JAMA PSYCHIAT, V76, P280, DOI 10.1001/jamapsychiatry.2018.3652
  74. Thapar A, 2017, LANCET PSYCHIAT, V4, P339, DOI 10.1016/S2215-0366(16)30376-5
  75. Trubetskoy V, 2022, NATURE, V604, P502, DOI 10.1038/s41586-022-04434-5
  76. Tung YH, 2021, AM J PSYCHIAT, V178, P730, DOI 10.1176/appi.ajp.2020.20070999
  77. Uher R, 2017, WORLD PSYCHIATRY, V16, P121, DOI 10.1002/wps.20436
  78. Veyssiere H, 2022, CLIN PROTEOM, V19, DOI 10.1186/s12014-022-09362-0
  79. Voetterl Helena, 2023, Biol Psychiatry Cogn Neurosci Neuroimaging, V8, P52, DOI 10.1016/j.bpsc.2022.02.007
  80. Waszczuk MA, 2021, WORLD PSYCHIATRY, V20, P65, DOI 10.1002/wps.20811
  81. Watson D, 2022, WORLD PSYCHIATRY, V21, P26, DOI 10.1002/wps.20943
  82. Wirsching J, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0583-x
  83. World Health Organization, INT CLASSIFICATION D
  84. Wray NR, 2018, NAT GENET, V50, P668, DOI 10.1038/s41588-018-0090-3
  85. Yu DM, 2019, AM J PSYCHIAT, V176, P217, DOI 10.1176/appi.ajp.2018.18070857