Comparative stereological evaluation of the term allantochorion membrane in the mare pregnant with mule foals and equine foals

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
TINEL, Julia Boldrini
ALONSO, Maria Augusta
FERNANDES, Claudia Barbosa
Citação
ANIMAL REPRODUCTION SCIENCE, v.250, article ID 107201, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Mules are derived from crossing horse mares with a donkey, in which the interest is due to gentleness and ability to work and equestrian sports. As the placenta is responsible for fetal development and maturation, knowing its typical microstructure allows us to understand how fetomaternal interactions occur in this interspecific pregnancy. Thus, the study performed a comparative stereological evaluation of volumetric composition and fetomaternal contact surface in the uterine body (UB), gravid uterine horn (GUH), and nongravid uterine horn (NGUH) of Mangalarga Paulista mare's term allantochorion membrane in mule and equine pregnancies. In equine gestation, the UB microcotyledon surface density was negatively correlated with the NGUH absolute area and the total volume of microvilli. In mule gestation, the base width and the number of microcotyledon were negatively correlated with the height and number of micro-cotyledons in the NGUH. Mule also showed a negative correlation between (1) the UB micro-cotyledon surface density and the GUH microcotyledons number per unit of membrane length, (2) the GUH total volume and the NGUH microcotyledon number. Such differences demonstrate a compensatory mechanism in conversion capacity among macrocompartments. A trend toward a greater total volume of allantoid vessels and total volume of allantoid mesoderm in UB microvilli was found in the equine and mule groups, respectively. There was a significant increase in the base width of microcotyledons in the NGUH of mules versus horses. These finds possibly influence the exchange capacity of each placental microregion and suggest a difference between mule versus horse term allantochorion membrane.
Palavras-chave
Interspecific pregnancy, Comparative stereology, Allantochorion membrane
Referências
  1. Abd-Elnaeim MMM, 2006, PLACENTA, V27, P1103, DOI 10.1016/j.placenta.2005.11.005
  2. Adeyinka FD, 2016, ANAT REC, V299, P1571, DOI 10.1002/ar.23472
  3. Allen W.R., 1993, EQUINE REPROD, P536
  4. Allen WR, 2002, REPRODUCTION, V123, P445, DOI 10.1530/rep.0.1230445
  5. Allen WR, 1997, J HERED, V88, P384, DOI 10.1093/oxfordjournals.jhered.a023123
  6. ALLEN WR, 1993, EQUINE VET J, V25, P185, DOI 10.1111/j.2042-3306.1993.tb02940.x
  7. Ashbury A.C., 1993, EQUINE REPROD, P509
  8. BADDELEY AJ, 1986, J MICROSC-OXFORD, V142, P259, DOI 10.1111/j.1365-2818.1986.tb04282.x
  9. Boakari YL, 2019, REPROD DOMEST ANIM, V54, P823, DOI 10.1111/rda.13423
  10. Boeta M, 2005, J EQUINE VET SCI, V25, P531, DOI 10.1016/j.jevs.2005.10.007
  11. Bracher V, 1996, EQUINE VET J, V28, P180, DOI 10.1111/j.2042-3306.1996.tb03771.x
  12. Carluccio A, 2008, THERIOGENOLOGY, V69, P918, DOI 10.1016/j.theriogenology.2008.01.004
  13. Carluccio A, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05175
  14. Chavatte-Palmer P, 2016, ANN ENDOCRINOL-PARIS, V77, P67, DOI 10.1016/j.ando.2016.04.006
  15. Coan PM, 2008, J PHYSIOL-LONDON, V586, P4567, DOI 10.1113/jphysiol.2008.156133
  16. Coan PM, 2004, BIOL REPROD, V70, P1806, DOI 10.1095/biolreprod.103.024166
  17. COTTRILL CM, 1991, J REPROD FERTIL, P591
  18. FERRELL CL, 1991, J ANIM SCI, V69, P1945, DOI 10.2527/1991.6951945x
  19. Fowden AL, 2006, J PHYSIOL-LONDON, V572, P5, DOI 10.1113/jphysiol.2005.104141
  20. Gerstenberg C, 1999, J REPROD FERTIL, V117, P143, DOI 10.1530/jrf.0.1170143
  21. Giger R, 1997, SCHWEIZ ARCH TIERH, V139, P303
  22. Howard C.V., 2005, UNBIASED STEREOLOGY, Vsecond
  23. Macdonald AA, 2000, PLACENTA, V21, P565, DOI 10.1053/plac.2000.0510
  24. Mayhew TM, 2008, PLACENTA, V29, P366, DOI 10.1016/j.placenta.2008.01.011
  25. Mayhew Terry M., 2009, Image Analysis & Stereology, V28, P121, DOI 10.5566/ias.v28.p121-127
  26. Mayhew TM, 2006, PLACENTA, V27, pS17, DOI 10.1016/j.placenta.2005.11.006
  27. Mayhew TM, 2003, PLACENTA, V24, P219, DOI 10.1053/plac.2002.0900
  28. Meirelles M.G., 2014, DISSERTA AO MESTRADO, DOI [10.11606/D.10.2014.tde-05122014-115855, DOI 10.11606/D.10.2014.TDE-05122014-115855]
  29. Meirelles MG, 2017, J EQUINE VET SCI, V56, P68, DOI 10.1016/j.jevs.2017.03.226
  30. Paolucci M, 2012, THERIOGENOLOGY, V77, P240, DOI 10.1016/j.theriogenology.2011.07.030
  31. Ribeiro Cássio Ricardo, 2004, Cienc. Rural, V34, P1081, DOI 10.1590/S0103-84782004000400018
  32. Riccio A.V., 2017, DISSERTA AO MESTRADO, DOI [10.11606/D.10.2018.tde-22112017-162033, DOI 10.11606/D.10.2018.TDE-22112017-162033]
  33. Robles M, 2018, THERIOGENOLOGY, V108, P136, DOI 10.1016/j.theriogenology.2017.11.007
  34. Saber A, 2008, ANAT HISTOL EMBRYOL, V37, P86, DOI 10.1111/j.1439-0264.2007.00805.x
  35. Samuelson D.A., 2007, TRATADO HISTOLOGIA V, Vfirst
  36. Toledo C. Z. P. de, 2015, Brazilian Journal of Veterinary Research and Animal Science, V52, P195, DOI 10.11606/issn.1678-4456.v52i3p195-204
  37. Veras MM, 2008, BIOL REPROD, V79, P578, DOI 10.1095/biolreprod.108.069591
  38. Veronesi MC, 2010, THERIOGENOLOGY, V74, P627, DOI 10.1016/j.theriogenology.2010.03.006
  39. Walton A, 1938, PROC R SOC SER B-BIO, V125, P311, DOI 10.1098/rspb.1938.0029
  40. Wang X, 2013, P NATL ACAD SCI USA, V110, P10705, DOI 10.1073/pnas.1308998110
  41. Wilsher S, 2012, EQUINE VET J, V44, P113, DOI 10.1111/j.2042-3306.2011.00452.x
  42. Wilsher S, 2003, EQUINE VET J, V35, P476, DOI 10.2746/042516403775600550
  43. Wu G, 2006, J ANIM SCI, V84, P2316, DOI 10.2527/jas.2006-156