Plasma enzymatic activity, proteomics and peptidomics in COVID-19-induced sepsis: A novel approach for the analysis of hemostasis

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SANTOS, Fernando Dos
LI, Joyce B. B.
MAZOR, Rafi
BERETTA, Laura
COUFAL, Nicole G.
LAM, Michael T. Y.
ODISH, Mazen F.
O'DONOGHUE, Anthony J.
Citação
FRONTIERS IN MOLECULAR BIOSCIENCES, v.9, article ID 1051471, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Infection by SARS-CoV-2 and subsequent COVID-19 can cause viral sepsis. We investigated plasma protease activity patterns in COVID-19-induced sepsis with bacterial superinfection, as well as plasma proteomics and peptidomics in order to assess the possible implications of enhanced proteolysis on major protein systems (e.g., coagulation).Methods: Patients (=4) admitted to the intensive care units (ICUs) at the University of California, San Diego (UCSD) Medical Center with confirmed positive test for COVID-19 by real-time reverse transcription polymerase chain reaction (RT-PCR) were enrolled in a study approved by the UCSD Institutional Review Board (IRB# 190699, Protocol #20-0006). Informed consent was obtained for the collection of blood samples and de-identified use of the data. Blood samples were collected at multiple time points and analyzed to quantify a) the circulating proteome and peptidome by mass spectrometry; b) the aminopeptidase activity in plasma; and c) the endopeptidase activity in plasma using fluorogenic substrates that are cleaved by trypsin-like endopeptidases, specific clotting factors and plasmin. The one patient who died was diagnosed with bacterial superinfection on day 7 after beginning of the study.Results: Spikes in protease activity (factor VII, trypsin-like activity), and corresponding increases in the intensity of peptides derived by hydrolysis of plasma proteins, especially of fibrinogen degradation products and downregulation of endogenous protease inhibitors were detected on day 7 for the patient who died. The activity of the analyzed proteases was stable in survivors.Discussion: The combination of multiomics and enzymatic activity quantification enabled to i) hypothesize that elevated proteolysis occurs in COVID-19-induced septic shock with bacterial superinfection, and ii) provide additional insight into malfunctioning protease-mediated systems, such as hemostasis.
Palavras-chave
COVID-19, sepsis, proteolysis, enzymatic activity, peptidomics, proteomics
Referências
  1. Aletti F, 2022, EUR J TRAUMA EMERG S, V48, P1579, DOI 10.1007/s00068-020-01591-y
  2. Aletti F, 2016, SHOCK, V45, P540, DOI 10.1097/SHK.0000000000000532
  3. Aletti F, 2016, SCAND J TRAUMA RESUS, V24, DOI 10.1186/s13049-016-0197-4
  4. Alhazzani W, 2021, CRIT CARE MED, V49, pE219, DOI 10.1097/CCM.0000000000004899
  5. Asakura H, 2021, INT J HEMATOL, V113, P45, DOI 10.1007/s12185-020-03029-y
  6. Bauza-Martinez J, 2018, BRIT J ANAESTH, V121, P1065, DOI 10.1016/j.bja.2018.05.072
  7. Bidula S, 2019, J IMMUNOL RES, V2019, DOI 10.1155/2019/3205072
  8. Birnhuber A, 2021, EUR RESPIR J, V58, DOI 10.1183/13993003.00377-2021
  9. Braga D, 2019, CRIT CARE, V23, DOI 10.1186/s13054-019-2670-8
  10. Cambiaghi A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25035-1
  11. Cambiaghi A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09619-x
  12. Courelli V, 2021, CELL MOL BIOENG, V14, P583, DOI 10.1007/s12195-021-00693-w
  13. Demichev V, 2021, CELL SYST, V12, P780, DOI 10.1016/j.cels.2021.05.005
  14. Garcia-Vidal C, 2021, CLIN MICROBIOL INFEC, V27, P83, DOI 10.1016/j.cmi.2020.07.041
  15. Haas P, 2021, J PROTEOME RES, V20, P1133, DOI 10.1021/acs.jproteome.0c00764
  16. Iba T, 2020, J THROMB HAEMOST, V18, P2103, DOI 10.1111/jth.14975
  17. Kong YX, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-03079-y
  18. Lazzaroni MG, 2021, BLOOD REV, V46, DOI 10.1016/j.blre.2020.100745
  19. Lopes-Pacheco M, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.593223
  20. Maffioli E, 2020, MOLECULES, V25, DOI 10.3390/molecules25184071
  21. Mangioni D, 2020, J INFECT DIS, V221, P1039, DOI 10.1093/infdis/jiz585
  22. Manguy J, 2017, J PROTEOME RES, V16, P712, DOI 10.1021/acs.jproteome.6b00751
  23. McArdle A, 2021, J PROTEOME RES, V20, P4627, DOI 10.1021/acs.jproteome.1c00475
  24. Messner CB, 2020, CELL SYST, V11, P11, DOI 10.1016/j.cels.2020.05.012
  25. Osuchowski MF, 2021, LANCET RESP MED, V9, P622, DOI 10.1016/S2213-2600(21)00218-6
  26. Osuchowski MF, 2020, SHOCK, V54, P416, DOI 10.1097/SHK.0000000000001565
  27. Polycarpou A, 2020, EMBO MOL MED, V12, DOI 10.15252/emmm.202012642
  28. Ranucci M, 2020, J CLIN MED, V9, DOI 10.3390/jcm9113487
  29. Roche N, 2022, EUR RESPIR J, V60, DOI 10.1183/13993003.00803-2022
  30. Schuurman AR, 2021, INTENS CARE MED EXP, V9, DOI 10.1186/s40635-021-00383-x
  31. Sharma NK, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15755-1
  32. Tang YJ, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01708
  33. Welte T, 2021, EUR RESPIR REV, V30, DOI 10.1183/16000617.0384-2020
  34. Wiersinga WJ, 2020, JAMA-J AM MED ASSOC, V324, P782, DOI 10.1001/jama.2020.12839