Longitudinal changes in blood pressure are preceded by changes in albuminuria and accelerated by increasing dietary sodium intake

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
KATAYAMA, Isis Akemi
HUANG, Yuefei
GARZA, Amanda E.
BROOKS, Danielle L.
WILLIAMS, Jonathan S.
NASCIMENTO, Mariana M.
POJOGA, Luminita H.
Citação
EXPERIMENTAL GERONTOLOGY, v.173, article ID 112114, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Dietary sodium is a well-known risk factor for cardiovascular and renal disease; however, direct evidence of the longitudinal changes that occur with aging, and the influence of dietary sodium on the age-associated alterations are scarce. Methods: C57BL/6 mice were maintained for 13 months on a low (LS, 0.02 % Na+), normal (NS, 0.3 % Na+) or high (HS, 1.6 % Na+) salt diet. We assessed 1) the longitudinal trajectories for two markers of cardiovascular and renal dysfunction (blood pressure (BP) and albuminuria), as well as hormonal changes, and 2) end-of-study cardiac and renal parameters. Results: The effect of aging on BP and kidney damage did not reach significance levels in the LS group; however, relative to baseline, there were significant increases in these parameters for animals maintained on NS and HS diets, starting as early as month 7 and month 5, respectively. Furthermore, changes in albuminuria preceded the changes in BP relative to baseline, irrespective of the diet. Circulating aldosterone and plasma renin activity displayed the expected decreasing trends with age and dietary sodium loading. As compared to LS - higher dietary sodium consumption associated with increasing trends in left ventricular mass and volume indices, consistent with an eccentric dilated phenotype. Functional and molecular markers of kidney dysfunction dis-played similar trends with increasing long-term sodium levels: higher renovascular resistance, increased glomerular volumes, as well as higher levels of renal angiotensin II type 1 and mineralocorticoid receptors, and lower renal Klotho levels. Conclusion: Our study provides a timeline for the development of cardiorenal dysfunction with aging, and doc-uments that increasing dietary salt accelerates the age-induced phenotypes. In addition, we propose albuminuria as a prognostic biomarker for the future development of hypertension. Last, we identified functional and mo-lecular markers of renal dysfunction that associate with long-term dietary salt loading.
Palavras-chave
Dietary sodium, Blood pressure, Aging, Albuminuria
Referências
  1. Abreu D, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5634-z
  2. Alderman MH, 2016, NEW ENGL J MED, V375, P2406
  3. BAUER JH, 1993, DRUG AGING, V3, P238, DOI 10.2165/00002512-199303030-00005
  4. Begg DP, 2017, PHYSIOL BEHAV, V178, P28, DOI 10.1016/j.physbeh.2017.03.003
  5. Bibbins-Domingo K, 2014, JAMA INTERN MED, V174, P136, DOI 10.1001/jamainternmed.2013.11818
  6. Bidani AK, 2002, CURR OPIN NEPHROL HY, V11, P73, DOI 10.1097/00041552-200201000-00011
  7. Brooks DL, 2019, ENDOCRINOLOGY, V160, P716, DOI 10.1210/en.2018-00989
  8. CARVALHO JJM, 1989, HYPERTENSION, V14, P238, DOI 10.1161/01.HYP.14.3.238
  9. Chang WT, 2015, JOVE-J VIS EXP, DOI 10.3791/52598
  10. Citterio L, 2020, CLIN J AM SOC NEPHRO, V15, P375, DOI 10.2215/CJN.08620719
  11. Combe R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153472
  12. Dai DF, 2012, ANTIOXID REDOX SIGN, V16, P1492, DOI 10.1089/ars.2011.4179
  13. De Moudt S, 2022, COMMUN BIOL, V5, DOI 10.1038/s42003-022-03563-x
  14. DESIMONE G, 1994, HYPERTENSION, V23, P600, DOI 10.1161/01.HYP.23.5.600
  15. Domondon M, 2020, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.01588
  16. FELICIO LS, 1984, BIOL REPROD, V31, P446, DOI 10.1095/biolreprod31.3.446
  17. Ferreira DN, 2010, J NUTR, V140, P1742, DOI 10.3945/jn.109.117473
  18. Finch CE, 2014, J STEROID BIOCHEM, V142, P132, DOI 10.1016/j.jsbmb.2013.03.010
  19. Fisch S., 2016, J VIS EXP, V109
  20. Forman JP, 2008, J AM SOC NEPHROL, V19, P1983, DOI 10.1681/ASN.2008010038
  21. Forouzanfar MH, 2017, JAMA-J AM MED ASSOC, V317, P165, DOI 10.1001/jama.2016.19043
  22. Franklin SS, 1997, CIRCULATION, V96, P308
  23. Garza AE, 2020, J ENDOCRINOL, V245, P439, DOI 10.1530/JOE-19-0562
  24. Garza AE, 2015, HYPERTENSION, V65, P211, DOI 10.1161/HYPERTENSIONAHA.114.04233
  25. Gupta A, 2007, J BIOL CHEM, V282, P5116, DOI 10.1074/jbc.M609254200
  26. GUYTON AC, 1972, AM J MED, V52, P584, DOI 10.1016/0002-9343(72)90050-2
  27. Hajjar IM, 2001, ARCH INTERN MED, V161, P589, DOI 10.1001/archinte.161.4.589
  28. Hanamura K, 2012, INT J NEPHROL, V2012, DOI 10.1155/2012/139565
  29. Hartner A, 2003, NEPHROL DIAL TRANSPL, V18, P1999, DOI 10.1093/ndt/gfg299
  30. He FJ, 2009, HYPERTENSION, V54, P482, DOI 10.1161/HYPERTENSIONAHA.109.133223
  31. Heimann AS, 2007, P NATL ACAD SCI USA, V104, P20588, DOI 10.1073/pnas.0706980105
  32. Heimann AS, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187306
  33. Hodgin JB, 2015, J AM SOC NEPHROL, V26, P3162, DOI 10.1681/ASN.2014080752
  34. Hoit BD, 2002, GENOMICS, V79, P679, DOI 10.1006/geno.2002.6754
  35. Hosohata K, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102080
  36. Hu JW, 2020, J CLIN HYPERTENS, V22, P2051, DOI 10.1111/jch.14044
  37. Huang YF, 2019, J ENDOCRINOL, V240, P111, DOI 10.1530/JOE-18-0247
  38. Imanishi M, 2001, DIABETES CARE, V24, P111, DOI 10.2337/diacare.24.1.111
  39. JUNG FF, 1995, J AM SOC NEPHROL, V5, P1573
  40. Kang MJ, 2022, KIDNEY360, V3, P74, DOI 10.34067/KID.0003912021
  41. Kang MJ, 2021, NEPHROL DIAL TRANSPL, V36, P512, DOI 10.1093/ndt/gfaa107
  42. Katayama IA, 2014, J NUTR, V144, P1571, DOI 10.3945/jn.114.192054
  43. Kawarazaki H, 2010, NEPHROL DIAL TRANSPL, V25, P2879, DOI 10.1093/ndt/gfq197
  44. Kawarazaki W, 2020, J CLIN INVEST, V130, P4152, DOI 10.1172/JCI134431
  45. Keane WF, 1999, AM J KIDNEY DIS, V33, P1004, DOI 10.1016/S0272-6386(99)70442-7
  46. Khaledifar A, 2013, INT J HYPERTENS, V2013, DOI 10.1155/2013/523682
  47. Koh N, 2001, BIOCHEM BIOPH RES CO, V280, P1015, DOI 10.1006/bbrc.2000.4226
  48. Kuroo M, 1997, NATURE, V390, P45, DOI 10.1038/36285
  49. Lifton RP, 2001, CELL, V104, P545, DOI 10.1016/S0092-8674(01)00241-0
  50. Lim JH, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/171383
  51. Machado FC, 2014, BRIT J PHARMACOL, V171, P961, DOI 10.1111/bph.12488
  52. Mettimano M, 2001, Eur Rev Med Pharmacol Sci, V5, P31
  53. Mills KT, 2016, CIRCULATION, V134, P441, DOI 10.1161/CIRCULATIONAHA.115.018912
  54. Mitchell SJ, 2015, ANNU REV ANIM BIOSCI, V3, P283, DOI 10.1146/annurev-animal-022114-110829
  55. OLIVER WJ, 1975, CIRCULATION, V52, P146, DOI 10.1161/01.CIR.52.1.146
  56. Palliyaguru DL, 2021, J GERONTOL A-BIOL, V76, P552, DOI 10.1093/gerona/glaa285
  57. Park SK, 2014, CIRC J, V78, P656, DOI 10.1253/circj.CJ-13-0745
  58. Pichaiwong W, 2019, CLIN NEPHROL, V92, P73, DOI 10.5414/CN109606
  59. Pojoga LH, 2014, J PHARMACOL EXP THER, V348, P260, DOI 10.1124/jpet.113.209189
  60. Pojoga LH, 2011, AM J PHYSIOL-HEART C, V301, pH1862, DOI 10.1152/ajpheart.00513.2011
  61. Pojoga LH, 2010, ENDOCRINOLOGY, V151, P1236, DOI 10.1210/en.2009-0514
  62. Ranjit S, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.129615
  63. Sacks FM, 2001, NEW ENGL J MED, V344, P3, DOI 10.1056/NEJM200101043440101
  64. Sataranatarajan K, 2012, AGING CELL, V11, P1065, DOI 10.1111/acel.12008
  65. Schlanger LE, 2010, ADV CHRONIC KIDNEY D, V17, P308, DOI 10.1053/j.ackd.2010.03.008
  66. Schmid C, 1997, HYPERTENSION, V29, P923, DOI 10.1161/01.HYP.29.4.923
  67. Schweda F, 2015, PFLUG ARCH EUR J PHY, V467, P565, DOI 10.1007/s00424-014-1668-y
  68. Swift PA, 2005, HYPERTENSION, V46, P308, DOI 10.1161/01.HYP.0000172662.12480.7f
  69. The Jackson Laboratory, LIF SPAN BIOM
  70. Tublin ME, 2003, AM J ROENTGENOL, V180, P885, DOI 10.2214/ajr.180.4.1800885
  71. Uneda K, 2017, J AM HEART ASSOC, V6, DOI 10.1161/JAHA.117.006120
  72. Viazzi F, 2014, J HYPERTENS, V32, P149, DOI 10.1097/HJH.0b013e328365b29c
  73. Waheed S, 2012, AM J KIDNEY DIS, V60, P207, DOI 10.1053/j.ajkd.2012.03.011
  74. Wang TJ, 2019, KIDNEY BLOOD PRESS R, V44, P590, DOI 10.1159/000500782
  75. Wang TJ, 2005, CIRCULATION, V111, P1370, DOI 10.1161/01.CIR.0000158434.69180.2D
  76. Wills AK, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1000440
  77. Wu C.H., 2018, ARTERIOSCL THROM VAS, V38, P108
  78. Yilmaz R, 2012, EUR J CLIN NUTR, V66, P1214, DOI 10.1038/ejcn.2012.110
  79. Yoon HE, 2014, KOREAN J INTERN MED, V29, P291, DOI 10.3904/kjim.2014.29.3.291
  80. Yu HCM, 1998, CIRCULATION, V98, P2621, DOI 10.1161/01.CIR.98.23.2621
  81. Zhou XL, 2015, J AM SOC NEPHROL, V26, P121, DOI 10.1681/ASN.2013101033
  82. Zhu H, 2015, INT J OBESITY, V39, P1249, DOI 10.1038/ijo.2015.51
  83. Zuo Z, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/8392952
  84. Zuo Z, 2011, AGE, V33, P261, DOI 10.1007/s11357-010-9176-2