Revisiting the role of hyperbaric oxygen therapy in knee injuries: Potential benefits and mechanisms

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
JOURNAL OF CELLULAR PHYSIOLOGY, v.238, n.3, p.498-512, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Knee injury negatively impacts routine activities and quality of life of millions of people every year. Disruption of tendons, ligaments, and articular cartilage are major causes of knee lesions, leading to social and economic losses. Besides the attempts for an optimal recovery of knee function after surgery, the joint healing process is not always adequate given the nature of intra-articular environment. Based on that, different therapeutic methods attempt to improve healing capacity. Hyperbaric oxygen therapy (HBOT) is an innovative biophysical approach that can be used as an adjuvant treatment post-knee surgery, to potentially prevent chronic disorders that commonly follows knee injuries. Given the well-recognized role of HBOT in improving wound healing, further research is necessary to clarify the benefits of HBOT in damaged musculoskeletal tissues, especially knee disorders. Here, we review important mechanisms of action for HBOT-induced healing including the induction of angiogenesis, modulation of inflammation and extracellular matrix components, and activation of parenchyma cells-key events to restore knee function after injury. This review discusses the basic science of the healing process in knee injuries, the role of oxygen during cicatrization, and shed light on the promising actions of HBOT in treating knee disorders, such as tendon, ligament, and cartilage injuries.
Palavras-chave
hyperbaric oxygen therapy, knee, ligament injury, oxidative stress, review
Referências
  1. Barata P, 2011, THER ADV MUSCULOSKEL, V3, P111, DOI 10.1177/1759720X11399172
  2. Barbieri Elena, 2012, J Signal Transduct, V2012, P982794, DOI 10.1155/2012/982794
  3. Basci O, 2018, UNDERSEA HYPERBAR M, V45, P411
  4. Blalock D, 2015, CLIN MED INSIGHTS-AR, V8, P15, DOI 10.4137/CMAMD.S22147
  5. Bonello S, 2007, ARTERIOSCL THROM VAS, V27, P755, DOI 10.1161/01.ATV.0000258979.92828.bc
  6. Broughton G, 2006, PLAST RECONSTR SURG, V117, p12S, DOI 10.1097/01.prs.0000225430.42531.c2
  7. Chan YS, 2007, UNDERSEA HYPERBAR M, V34, P181
  8. Chen ACY, 2010, J ORTHOP SURG RES, V5, DOI 10.1186/1749-799X-5-91
  9. Chen LW, 2003, NAT MED, V9, P575, DOI 10.1038/nm849
  10. Cherng JH, 2012, ANN PLAS SURG, V69, P650, DOI 10.1097/SAP.0b013e3182745f95
  11. Chisari E, 2020, BRIT MED BULL, V133, P49, DOI 10.1093/bmb/ldz040
  12. Semenza GL, 2010, WIRES SYST BIOL MED, V2, P336, DOI 10.1002/wsbm.69
  13. Sen CK, 2008, BBA-GEN SUBJECTS, V1780, P1348, DOI 10.1016/j.bbagen.2008.01.006
  14. Sha YQ, 2019, J CELL PHYSIOL, V234, P8846, DOI 10.1002/jcp.27546
  15. Sharif M, 2004, ARTHRITIS RHEUM-US, V50, P507, DOI 10.1002/art.20020
  16. Sies H, 2017, ANNU REV BIOCHEM, V86, P715, DOI 10.1146/annurev-biochem-061516-045037
  17. Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035
  18. Silva FS, 2021, CONNECT TISSUE RES, V62, P249, DOI 10.1080/03008207.2020.1821675
  19. Smith GD, 2005, J BONE JOINT SURG BR, V87B, P445, DOI 10.1302/0301-620X.87B4
  20. Soolsma S. J., 1996, EFFECT INTERMITTENT
  21. Speit G, 2002, MUTAT RES-REV MUTAT, V512, P111, DOI 10.1016/S1383-5742(02)00045-5
  22. Vad V B, 2000, Phys Med Rehabil Clin N Am, V11, P881
  23. Stone JR, 2002, ENDOTHELIUM-J ENDOTH, V9, P231, DOI 10.1080/10623320214733
  24. Strowitzki MJ, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8050384
  25. Takeyama N, 2007, KNEE SURG SPORT TR A, V15, P443, DOI 10.1007/s00167-006-0241-4
  26. Thom SR, 2011, PLAST RECONSTR SURG, V127, p131S, DOI 10.1097/PRS.0b013e3181fbe2bf
  27. Thomas AC, 2017, J ATHL TRAINING, V52, P491, DOI 10.4085/1062-6050-51.5.08
  28. Thomopoulos S, 2015, J ORTHOP RES, V33, P832, DOI 10.1002/jor.22806
  29. Tomasek JJ, 2002, NAT REV MOL CELL BIO, V3, P349, DOI 10.1038/nrm809
  30. Ueng SWN, 2013, J ORTHOP RES, V31, P376, DOI 10.1002/jor.22235
  31. van der Vliet A, 2014, J CELL BIOCHEM, V115, P427, DOI 10.1002/jcb.24683
  32. Vavken P, 2011, SPORTS MED ARTHROSC, V19, P44, DOI 10.1097/JSA.0b013e3182095e5d
  33. Voleti PB, 2012, ANNU REV BIOMED ENG, V14, P47, DOI 10.1146/annurev-bioeng-071811-150122
  34. Wang YQ, 2012, MOL CELL BIOCHEM, V360, P235, DOI 10.1007/s11010-011-1061-5
  35. Wang YZ, 2013, KNEE SURG SPORT TR A, V21, P1751, DOI 10.1007/s00167-012-1977-7
  36. Wu F, 2017, EFORT OPEN REV, V2, P332, DOI 10.1302/2058-5241.2.160075
  37. Wu GY, 2011, AMINO ACIDS, V40, P1053, DOI 10.1007/s00726-010-0715-z
  38. Yagishita K, 2019, UNDERSEA HYPERBAR M, V46, P647
  39. Yeh WL, 2007, J ORTHOP RES, V25, P636, DOI 10.1002/jor.20360
  40. Choudhury R, 2018, INT J GEN MED, V11, P431, DOI 10.2147/IJGM.S172460
  41. YSART GE, 1994, BBA-MOL CELL RES, V1221, P15, DOI 10.1016/0167-4889(94)90210-0
  42. Yuan LJ, 2009, J ORTHOP RES, V27, P1439, DOI 10.1002/jor.20889
  43. Yuan LJ, 2004, J ORTHOP RES, V22, P1126, DOI 10.1016/j.orthres.2004.01.006
  44. Zelzer E, 2014, BIRTH DEFECTS RES C, V102, P101, DOI 10.1002/bdrc.21056
  45. Zhao D, 2017, CLIN THER, V39, P2088, DOI 10.1016/j.clinthera.2017.08.014
  46. Zhao RZ, 2019, INT J MOL MED, V44, P3, DOI 10.3892/ijmm.2019.4188
  47. Zhou D, 2005, J ORTHOP RES, V23, P949, DOI 10.1016/j.orthres.2005.01.022
  48. Zhou Q, 2018, CELL PHYSIOL BIOCHEM, V47, P1800, DOI 10.1159/000491061
  49. Dai NT, 2015, ANN PLAS SURG, V74, pS139, DOI 10.1097/SAP.0000000000000453
  50. Davenport M, 2020, EMERG MED CLIN N AM, V38, P143, DOI 10.1016/j.emc.2019.09.012
  51. Demange MK, 2014, CLIN SPORT MED, V33, P161, DOI 10.1016/j.csm.2013.06.006
  52. Dunkin BS, 2013, OPER TECHN SPORT MED, V21, P100, DOI 10.1053/j.otsm.2013.03.003
  53. Fermor B, 2007, EUR CELLS MATER, V13, P56, DOI 10.22203/eCM.v013a06
  54. Fosen KM, 2014, ANTIOXID REDOX SIGN, V21, P1634, DOI 10.1089/ars.2014.5940
  55. Fries RB, 2005, MUTAT RES-FUND MOL M, V579, P172, DOI 10.1016/j.mrfmmm.2005.02.023
  56. Fuhrmann DC, 2017, REDOX BIOL, V12, P208, DOI 10.1016/j.redox.2017.02.012
  57. Furie B, 2008, NEW ENGL J MED, V359, P938, DOI 10.1056/NEJMra0801082
  58. Leite CBG, 2019, ACTA ORTOP BRAS, V27, P325, DOI 10.1590/1413-785220192706226481
  59. Goldman RJ, 2009, PM&R, V1, P471, DOI 10.1016/j.pmrj.2009.03.012
  60. Gomoll AH, 2014, WOUND REPAIR REGEN, V22, P30, DOI 10.1111/wrr.12166
  61. Grimberg-Peters D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161343
  62. Grimshaw MJ, 2000, OSTEOARTHR CARTILAGE, V8, P386, DOI 10.1053/joca.1999.0314
  63. Gurtner GC, 2008, NATURE, V453, P314, DOI 10.1038/nature07039
  64. Henrotin Y, 2005, OSTEOARTHR CARTILAGE, V13, P643, DOI 10.1016/j.joca.2005.04.002
  65. Heyboer M, 2017, ADV WOUND CARE, V6, P210, DOI 10.1089/wound.2016.0718
  66. Horn PC, 1999, CLIN ORTHOP RELAT R, P238
  67. Hsieh CP, 2010, CONNECT TISSUE RES, V51, P497, DOI 10.3109/03008201003746679
  68. Hsu RWW, 2004, J TRAUMA, V57, P1060, DOI 10.1097/01.TA.0000149247.63934.12
  69. Huang KC, 2006, J TRAUMA, V61, P913, DOI 10.1097/01.ta.0000196702.26858.56
  70. Imtiyaz HZ, 2010, CURR TOP MICROBIOL, V345, P105, DOI 10.1007/82_2010_74
  71. Ishii Y, 2002, J ORTHOP RES, V20, P353, DOI 10.1016/S0736-0266(01)00094-8
  72. Ishii Y, 1999, TISSUE ENG, V5, P279, DOI 10.1089/ten.1999.5.279
  73. Jagannathan Lakshmanan, 2016, Curr Pharmacol Rep, V2, P64
  74. Jain K, 2017, TXB HYPERBARIC MED
  75. Kang Thomas S, 2004, Arch Facial Plast Surg, V6, P31, DOI 10.1001/archfaci.6.1.31
  76. Kanhai A, 2003, J AM PODIAT MED ASSN, V93, P298, DOI 10.7547/87507315-93-4-298
  77. Kiapour AM, 2014, BONE JOINT RES, V3, P20, DOI 10.1302/2046-3758.32.2000241
  78. Kimmel HM, 2016, WOUNDS, V28, P264
  79. King JD, 2020, CARTILAGE, V11, P329, DOI 10.1177/1947603518790009
  80. Korucu IH, 2020, JOINT DIS RELAT SURG, V31, P260, DOI 10.5606/ehc.2020.72592
  81. Kuhn K, 2004, OSTEOARTHR CARTILAGE, V12, P1, DOI 10.1016/j.joca.2003.09.015
  82. Kuyinu EL, 2016, J ORTHOP SURG RES, V11, DOI 10.1186/s13018-016-0346-5
  83. Lam G, 2017, ADV SKIN WOUND CARE, V30, P181, DOI 10.1097/01.ASW.0000513089.75457.22
  84. Lambeth JD, 2007, FREE RADICAL BIO MED, V43, P319, DOI 10.1016/j.freeradbiomed.2007.03.028
  85. Lattermann C., 2018, BIOMED RES INT, V2018, P1
  86. Leach RM, 1998, BRIT MED J, V317, P1370, DOI 10.1136/bmj.317.7169.1370
  87. Leite C. B. G., 2021, J CARTILAGE JOINT PR, V1
  88. Leite MS, 2010, UNDERSEA HYPERBAR M, V37, P419
  89. Li WD, 2000, J CELL BIOCHEM, V78, P550, DOI 10.1002/1097-4644(20000915)78:4<550::AID-JCB4>3.3.CO;2-#
  90. Lieberthal J, 2015, OSTEOARTHR CARTILAGE, V23, P1825, DOI 10.1016/j.joca.2015.08.015
  91. Lin SS, 2019, OSTEOARTHR CARTILAGE, V27, P1372, DOI 10.1016/j.joca.2019.05.011
  92. Lo IKY, 2002, J ANAT, V200, P283, DOI 10.1046/j.1469-7580.2002.00024.x
  93. Man G S, 2014, J Med Life, V7, P37
  94. MARX RE, 1990, AM J SURG, V160, P519, DOI 10.1016/S0002-9610(05)81019-0
  95. Mashitori H, 2004, CLIN ORTHOP RELAT R, P268, DOI 10.1097/01.blo.0000128970.27390.f5
  96. Mathieu D, 2006, HDB HYPERBARIC MED
  97. Mathieu D, 2017, DIVING HYPERB MED, V47, P24, DOI 10.28920/dhm47.1.24-32
  98. McGarry T, 2018, FREE RADICAL BIO MED, V125, P15, DOI 10.1016/j.freeradbiomed.2018.03.042
  99. Melcher C, 2019, CARTILAGE, V10, P459, DOI 10.1177/1947603518764281
  100. Memar MY, 2019, BIOMED PHARMACOTHER, V109, P440, DOI 10.1016/j.biopha.2018.10.142
  101. Michael J Morgan, 2011, Cell Research, V21, P103
  102. Moghadam N, 2020, MED SCI SPORT EXER, V52, P1420, DOI 10.1249/MSS.0000000000002257
  103. Molloy T, 2003, SPORTS MED, V33, P381, DOI 10.2165/00007256-200333050-00004
  104. Moyad TF, 2011, CARTILAGE, V2, P226, DOI 10.1177/1947603510383973
  105. Mukherjee P, 2022, LAB ANIM RES, V38
  106. Murray MM, 2013, J ORTHOP RES, V31, P1501, DOI 10.1002/jor.22420
  107. Oyaizu T, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19670-x
  108. Page EL, 2008, MOL BIOL CELL, V19, P86, DOI 10.1091/mbc.E07-06-0612
  109. Panday Arvind, 2015, Cell Mol Immunol, V12, P5, DOI 10.1038/cmi.2014.89
  110. Park JE, 2004, AM J SURG, V187, p11S, DOI 10.1016/S0002-9610(03)00296-4
  111. Pasparakis M, 2008, MUCOSAL IMMUNOL, V1, pS54, DOI 10.1038/mi.2008.53
  112. Peng Z, 2021, BIOMATERIALS, V268, DOI 10.1016/j.biomaterials.2020.120555
  113. Plaas AHK, 2000, ARCH BIOCHEM BIOPHYS, V374, P35, DOI 10.1006/abbi.1999.1630
  114. Ranjan P, 2006, ANTIOXID REDOX SIGN, V8, P1447, DOI 10.1089/ars.2006.8.1447
  115. Rodrigues M, 2019, PHYSIOL REV, V99, P665, DOI 10.1152/physrev.00067.2017
  116. Ruthenborg RJ, 2014, MOL CELLS, V37, P637, DOI 10.14348/molcells.2014.0150
  117. Scholz CC, 2013, P NATL ACAD SCI USA, V110, P18490, DOI 10.1073/pnas.1309718110
  118. Semenza GL, 2001, TRENDS MOL MED, V7, P345, DOI 10.1016/S1471-4914(01)02090-1