Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
GARRIGOS, Murilo M.
OLIVEIRA, Fernando A.
MAMANI, Javier B.
DIAS, Olivia F. M.
REGO, Gabriel N. A.
COSTA, Cicero J. S.
SILVA, Lucas R. R.
ALVES, Arielly H.
Citação
PHARMACEUTICS, v.15, n.3, article ID 828, 18p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 mu g Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 +/- 0.37 mu g Fe/mL in the control and 6.61 +/- 0.84 mu g Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 +/- 0.66 mg Fe/g in the spleen of the control group and 2.17 +/- 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.
Palavras-chave
hematopoietic stem cells, bone marrow transplantation, bioluminescence imaging, ICP-MS, superparamagnetic iron oxide nanoparticles, engraftment, homing
Referências
  1. Atilla E, 2017, TURK J HEMATOL, V34, P1, DOI 10.4274/tjh.2016.0450
  2. Bajecny M, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.660617
  3. Becker JS, 2009, CHEM SOC REV, V38, P1969, DOI 10.1039/b618635c
  4. Bengtsson NE, 2011, LEUKEMIA, V25, P1223, DOI 10.1038/leu.2011.72
  5. Bernau K, 2014, J NEUROSCI METH, V228, P67, DOI 10.1016/j.jneumeth.2014.03.005
  6. Broxmeyer HE, 2005, J EXP MED, V201, P1307, DOI 10.1084/jem.20041385
  7. Camargo FD, 2006, BLOOD, V107, P501, DOI 10.1182/blood-2005-02-0655
  8. Cao YA, 2004, P NATL ACAD SCI USA, V101, P221, DOI 10.1073/pnas.2637010100
  9. Caocci G, 2017, MEDITERR J HEMATOL I, V9, DOI 10.4084/MJHID.2017.032
  10. Caspani S, 2020, MATERIALS, V13, DOI 10.3390/ma13112586
  11. Cavey T, 2019, FASEB J, V33, P11072, DOI 10.1096/fj.201801381RR
  12. Chen CCV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056125
  13. Comenge J, 2018, ELIFE, V7, DOI 10.7554/eLife.33140
  14. da Silva HR, 2019, WORLD J STEM CELLS, V11, P100, DOI 10.4252/wjsc.v11.i2.100
  15. de Castro Claudio Galvao Jr, 2001, J Pediatr (Rio J), V77, P345
  16. Di Gregorio E, 2018, J TRACE ELEM MED BIO, V48, P239, DOI 10.1016/j.jtemb.2018.04.018
  17. Du JW, 2020, MAT SCI ENG C-MATER, V116, DOI 10.1016/j.msec.2020.111188
  18. Duran-Struuck R, 2009, J AM ASSOC LAB ANIM, V48, P11
  19. Edmundson M, 2013, THERANOSTICS, V3, P573, DOI 10.7150/thno.5477
  20. Souza TKF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201453
  21. Focaccetti C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115686
  22. Garrigos MM, 2022, WORLD J STEM CELLS, V14, P658, DOI 10.4252/wjsc.v14.i8.658
  23. Ghosh S, 2020, FOOD CHEM TOXICOL, V136, DOI 10.1016/j.fct.2019.110989
  24. Gobbo OL, 2015, NANOMEDICINE-UK, V10, P1751, DOI 10.2217/nnm.15.22
  25. Groult H, 2015, BIOCONJUGATE CHEM, V26, P153, DOI 10.1021/bc500536y
  26. Gu JL, 2011, SCI CHINA LIFE SCI, V54, P793, DOI 10.1007/s11427-011-4215-5
  27. Hawley RG, 2006, METHOD ENZYMOL, V419, P149, DOI 10.1016/S0076-6879(06)19007-2
  28. Higuchi T, 2009, J NUCL MED, V50, P1088, DOI 10.2967/jnumed.108.060665
  29. Jasmin, 2017, INT J NANOMED, V12, P779, DOI 10.2147/IJN.S126530
  30. Jeong SY, 2015, BLOOD, V126
  31. Kandarakov O, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23084462
  32. Kim JE, 2015, NUCL MED MOLEC IMAG, V49, P3, DOI 10.1007/s13139-014-0309-x
  33. Kim SJ, 2016, CONTRAST MEDIA MOL I, V11, P55, DOI 10.1002/cmmi.1658
  34. Kuroda H, 2009, J VIROL METHODS, V157, P113, DOI 10.1016/j.jviromet.2008.11.021
  35. Kwarteng EO, 2016, JOVE-J VIS EXP, DOI 10.3791/54345
  36. Lanzkron SM, 1999, BLOOD, V93, P1916, DOI 10.1182/blood.V93.6.1916.406k15_1916_1921
  37. Lapidot T, 2005, BLOOD, V106, P1901, DOI 10.1182/blood-2005-04-1417
  38. Le HL, 2015, J NANOSCI NANOTECHNO, V15, P2605, DOI 10.1166/jnn.2015.9279
  39. Lee JY, 2020, INT J STEM CELLS, V13, P1, DOI 10.15283/ijsc19127
  40. Liebler JM, 2008, AM J PHYSIOL-LUNG C, V295, pL285, DOI 10.1152/ajplung.00222.2007
  41. Mamani JB, 2021, PHARMACEUTICS, V13, DOI 10.3390/pharmaceutics13081219
  42. Maxwell DJ, 2008, STEM CELLS, V26, P517, DOI 10.1634/stemcells.2007-0016
  43. Mezzanotte L, 2017, TRENDS BIOTECHNOL, V35, P640, DOI 10.1016/j.tibtech.2017.03.012
  44. Narmani A, 2018, J DRUG DELIV SCI TEC, V44, P457, DOI 10.1016/j.jddst.2018.01.011
  45. Niemeyer M, 2010, EUR RADIOL, V20, P2184, DOI 10.1007/s00330-010-1773-z
  46. Nucci MP, 2022, PHARMACEUTICS, V14, DOI 10.3390/pharmaceutics14061249
  47. Oh EJ, 2018, J CONTROL RELEASE, V279, P79, DOI 10.1016/j.jconrel.2018.04.020
  48. Oliveira FA, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9070752
  49. Oliveira FA, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9040939
  50. Park E, 2021, JOVE-J VIS EXP, DOI 10.3791/61875
  51. Rando A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0210752
  52. Rodea GE, 2017, FRONT CELL INFECT MI, V7, DOI 10.3389/fcimb.2017.00187
  53. Roy S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050693
  54. Sara JD, 2018, THER ADV MED ONCOL, V10, DOI 10.1177/1758835918780140
  55. Sethy C, 2021, BIOMED PHARMACOTHER, V137, DOI 10.1016/j.biopha.2021.111285
  56. Shaikh A, 2016, STEM CELL RES THER, V7, DOI 10.1186/s13287-016-0311-6
  57. Shin JY, 2014, J EXP MED, V211, P217, DOI 10.1084/jem.20131128
  58. Snowden JA, 2022, BONE MARROW TRANSPL, V57, P1217, DOI 10.1038/s41409-022-01691-w
  59. Sonavane G, 2008, COLLOID SURFACE B, V66, P274, DOI 10.1016/j.colsurfb.2008.07.004
  60. Suarez-Alvarez B, 2012, ADV EXP MED BIOL, V741, P152, DOI 10.1007/978-1-4614-2098-9_11
  61. SZILVASSY SJ, 1993, BLOOD, V81, P2310
  62. Wang XL, 2003, BLOOD, V102, P3478, DOI 10.1182/blood-2003-05-1432
  63. Wei H, 2021, INT J NANOMED, V16, P6097, DOI 10.2147/IJN.S321984
  64. Wu MY, 2018, RSC ADV, V8, P12260, DOI 10.1039/c8ra00044a
  65. Xaymardan M., 2008, PRINCIPLES REGENERAT, P268, DOI 10.1016/B978-012369410-2.50018-8