LDLR gene's promoter region hypermethylation in patients with familial hypercholesterolemia

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
ZORZO, R. A.
SUEN, V. M. M.
SANTOS, J. E.
SILVA-JR, W. A.
SUAZO, V. K.
HONORATO, A. L. S. C.
Citação
SCIENTIFIC REPORTS, v.13, n.1, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Familial hypercholesterolemia (FH) is characterized by high low-density lipoprotein cholesterol (LDL-C) levels and a high risk of early coronary heart disease. Structural alterations in the LDLR, APOB, and PCSK9 genes were not found in 20-40% of patients diagnosed using the Dutch Lipid Clinic Network (DCLN) criteria. We hypothesized that methylation in canonical genes could explain the origin of the phenotype in these patients. This study included 62 DNA samples from patients with a clinical diagnosis of FH according to the DCLN criteria, who previously tested negative for structural alterations in the canonical genes, and 47 DNA samples from patients with normal blood lipids (control group). All DNA samples were tested for methylation in the CpG islands of the three genes. The prevalence of FH relative to each gene was determined in both groups and the respective prevalence ratios (PRs) were calculated. The methylation analysis of APOB and PCSK9 was negative in both groups, showing no relationship between methylation in these genes and the FH phenotype. As the LDLR gene has two CpG islands, we analyzed each island separately. The analysis of LDLR-island1 showed PR = 0.982 (CI 0.33-2.95; chi(2) = 0.001; p = 0.973), also suggesting no relationship between methylation and the FH phenotype. Analysis of LDLR-island2 showed a PR of 4.12 (CI 1.43-11.88; chi(2) = 13,921; p = 0.00019), indicating a possible association between methylation on this island and the FH phenotype.
Palavras-chave
Referências
  1. Al Aboud NM., 2022, STATPEARLS
  2. [Anonymous], HUMAN HOMO SAPIENS G
  3. [Anonymous], 2004, PRINCIPIOS BIOESTATI
  4. Attawodi SE., 2010, SAHEL MED J, V13, P54
  5. Berberich AJ, 2019, NAT REV CARDIOL, V16, P9, DOI 10.1038/s41569-018-0052-6
  6. Bogsrud MP, 2016, CURR OPIN LIPIDOL, V27, P382, DOI 10.1097/MOL.0000000000000299
  7. Britannica. The Editors of Encyclopaedia, 2016, ENCYCL BRITANNICA
  8. Izar MCD, 2021, ARQ BRAS CARDIOL, V117, P782, DOI 10.36660/abc.20210788
  9. Deaton AM, 2011, GENE DEV, V25, P1010, DOI 10.1101/gad.2037511
  10. du Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000411
  11. Hayatsu H, 2008, P JPN ACAD B-PHYS, V84, P321, DOI 10.2183/pjab.84.321
  12. Hu PW, 2020, CIRCULATION, V141, P1742, DOI 10.1161/CIRCULATIONAHA.119.044795
  13. Jannes CE, 2015, ATHEROSCLEROSIS, V238, P101, DOI 10.1016/j.atherosclerosis.2014.11.009
  14. Khodadadi Ehsan, 2021, Biomed Res Int, V2021, P8827516, DOI 10.1155/2021/8827516
  15. McHugh ML, 2013, BIOCHEM MEDICA, V23, P143, DOI 10.11613/BM.2013.018
  16. Molloy L., 2011, J VIS EXP, V56, P1, DOI [10.3791/3170, DOI 10.3791/3170]
  17. Reeskamp LF, 2020, EBIOMEDICINE, V61, DOI 10.1016/j.ebiom.2020.103079
  18. Sarraju A, 2019, FRONT CARDIOVASC MED, V6, DOI 10.3389/fcvm.2019.00005
  19. Smith E, 2009, BMC CANCER, V9, DOI 10.1186/1471-2407-9-123
  20. Talmud PJ, 2013, LANCET, V381, P1293, DOI 10.1016/S0140-6736(12)62127-8
  21. Tamhane AR, 2016, STAT MED, V35, P5730, DOI 10.1002/sim.7059
  22. Tomaz PRX., 2016, RBAC, V48, P19
  23. Wang J, 2016, ARTERIOSCL THROM VAS, V36, P2439, DOI 10.1161/ATVBAHA.116.308027
  24. World Health Organization Human Genetics Program, 1998, WHOHGNFHCONS992 HUM
  25. Youngblom E., 2014, GENE REV