Different Transcriptomic Response to T. cruzi Infection in hiPSC-Derived Cardiomyocytes From Chagas Disease Patients With and Without Chronic Cardiomyopathy

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, v.12, article ID 904747, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chagas disease is a tropical zoonosis caused by Trypanosoma cruzi. After infection, the host present an acute phase, usually asymptomatic, in which an extensive parasite proliferation and intense innate immune activity occurs, followed by a chronic phase, characterized by low parasitemia and development of specific immunity. Most individuals in the chronic phase remain without symptoms or organ damage, a state called indeterminate IND form. However, 20 to 40% of individuals develop cardiac or gastrointestinal complications at any time in life. Cardiomyocytes have an important role in the development of Chronic Chagas Cardiomyopathy (CCC) due to transcriptional and metabolic alterations that are crucial for the parasite survival and replication. However, it still not clear why some infected individuals progress to a cardiomyopathy phase, while others remain asymptomatic. In this work, we used hiPSCs-derived cardiomyocytes (hiPSC-CM) to investigate patterns of infection, proliferation and transcriptional response in IND and CCC patients. Our data show that T. cruzi infection and proliferation efficiency do not differ significantly in PBMCs and hiPSC-CM from both groups. However, RNA-seq analysis in hiPSC-CM infected for 24 hours showed a significantly different transcriptional response to the parasite in cells from IND or CCC patients. Cardiomyocytes from IND showed significant differences in the expression of genes related to antigen processing and presentation, as well as, immune co-stimulatory molecules. Furthermore, the downregulation of collagen production genes and extracellular matrix components was significantly different in these cells. Cardiomyocytes from CCC, in turn, showed increased expression of mTORC1 pathway and unfolded protein response genes, both associated to increased intracellular ROS production. These data point to a differential pattern of response, determined by baseline genetic differences between groups, which may have an impact on the development of a chronic outcome with or without the presentation of cardiac symptoms.
Palavras-chave
chagas disease, chagas cardiomyopathy, iPSC (induced pluripotent stem cell), Trypanosoma cruzi (T. cruzi), RNA-Seq, cardiomyocytes (CMs)
Referências
  1. Duran-Rehbein GA, 2014, PARASITE, V21, DOI 10.1051/parasite/2014040
  2. Bozzi A, 2019, STEM CELL REP, V12, P1232, DOI 10.1016/j.stemcr.2019.04.017
  3. Cao SS, 2014, ANTIOXID REDOX SIGN, V21, P396, DOI 10.1089/ars.2014.5851
  4. Chevillard C, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02791
  5. Chou BK, 2011, CELL RES, V21, P518, DOI 10.1038/cr.2011.12
  6. Costales JA, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-252
  7. Cunha-Neto E, 2005, AM J PATHOL, V167, P305, DOI 10.1016/S0002-9440(10)62976-8
  8. Deghaide NHS, 1998, DIGEST DIS SCI, V43, P246, DOI 10.1023/A:1018829600200
  9. Didie M, 2017, FRONT IMMUNOL, V8, P1, DOI 10.3389/fimmu.2017.00955
  10. Dowey SN, 2012, NAT PROTOC, V7, P2013, DOI 10.1038/nprot.2012.121
  11. Florentino PTV, 2021, PLOS PATHOG, V17, DOI 10.1371/journal.ppat.1009502
  12. Fonseca R, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00997
  13. Lidani KCF, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00166
  14. Houston-Ludlam GA, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159197
  15. Koga R, 2006, J IMMUNOL, V177, P7059, DOI 10.4049/jimmunol.177.10.7059
  16. Lara LD, 2018, MICROBES INFECT, V20, P312, DOI 10.1016/j.micinf.2018.03.002
  17. Li Y, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005511
  18. Liberzon A, 2015, CELL SYST, V1, P417, DOI 10.1016/j.cels.2015.12.004
  19. Libisch MG, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.01889
  20. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  21. Luo WJ, 2013, BIOINFORMATICS, V29, P1830, DOI 10.1093/bioinformatics/btt285
  22. Nde PN, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00337
  23. Oliveira AER, 2020, GENOMICS, V112, P990, DOI 10.1016/j.ygeno.2019.06.015
  24. Paiva CN, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1006928
  25. Perez-Molina JA, 2018, LANCET, V391, P82, DOI 10.1016/S0140-6736(17)31612-4
  26. Ferreira LRP, 2014, WORLD J CARDIOL, V6, P782, DOI 10.4330/wjc.v6.i8.782
  27. Nielebock MAP, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0243008
  28. Ramirez MI, 2000, MOL BIOCHEM PARASIT, V111, P235, DOI 10.1016/S0166-6851(00)00309-1
  29. Rassi A, 2017, MEM I OSWALDO CRUZ, V112, P224, DOI 10.1590/0074-02760160334
  30. Ribeiro AL, 2012, NAT REV CARDIOL, V9, P576, DOI 10.1038/nrcardio.2012.109
  31. Sass G, 2019, AM J TROP MED HYG, V101, P1359, DOI 10.4269/ajtmh.19-0350
  32. Sharma Arun, 2018, Curr Protoc Hum Genet, V96, DOI 10.1002/cphg.53
  33. Sousa GR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172833
  34. Sousa GR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087082
  35. Souza PEA, 2007, INFECT IMMUN, V75, P1886, DOI 10.1128/IAI.01931-06
  36. Souza PEA, 2004, INFECT IMMUN, V72, P5283, DOI 10.1128/IAI.72.9.5283-5291.2004
  37. Udoko AN, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0003747
  38. VELGE P, 1991, EUR J IMMUNOL, V21, P2145, DOI 10.1002/eji.1830210924
  39. Wang XX, 2022, J CARDIOVASC TRANSL, V15, P340, DOI 10.1007/s12265-021-10162-4
  40. Wu TZ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100141