Empagliflozin reduces arrhythmogenic effects in rat neonatal and human iPSC-derived cardiomyocytes and improves cytosolic calcium handling at least partially independent of NHE1

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
COUTINHO, Keyla Cristiny da Silva
BARBOSA, Raiana Andrade Quintanilha
KASAI-BRUNSWICK, Tais Hanae
CARVALHO, Antonio Carlos Campos de
Citação
SCIENTIFIC REPORTS, v.13, n.1, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The antidiabetic agent class of sodium-glucose cotransporter 2 (SGLT2) inhibitors confer unprecedented cardiovascular benefits beyond glycemic control, including reducing the risk of fatal ventricular arrhythmias. However, the impact of SGLT2 inhibitors on the electrophysiological properties of cardiomyocytes exposed to stimuli other than hyperglycemia remains elusive. This investigation tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) affects cardiomyocyte electrical activity under hypoxic conditions. Rat neonatal and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes incubated or not with the hypoxia-mimetic agent CoCl2 were treated with EMPA (1 mu M) or vehicle for 24 h. Action potential records obtained using intracellular microelectrodes demonstrated that EMPA reduced the action potential duration at 30%, 50%, and 90% repolarization and arrhythmogenic events in rat and human cardiomyocytes under normoxia and hypoxia. Analysis of Ca2+ transients using Fura-2-AM and contractility kinetics showed that EMPA increased Ca2+ transient amplitude and decreased the half-time to recover Ca2+ transients and relaxation time in rat neonatal cardiomyocytes. We also observed that the combination of EMPA with the Na+/H+ exchanger isoform 1 (NHE1) inhibitor cariporide (10 mu M) exerted a more pronounced effect on Ca2+ transients and contractility than either EMPA or cariporide alone. Besides, EMPA, but not cariporide, increased phospholamban phosphorylation at serine 16. Collectively, our data reveal that EMPA reduces arrhythmogenic events, decreases the action potential duration in rat neonatal and human cardiomyocytes under normoxic or hypoxic conditions, and improves cytosolic calcium handling at least partially independent of NHE1. Moreover, we provided further evidence that SGLT2 inhibitor-mediated cardioprotection may be partly attributed to its cardiomyocyte electrophysiological effects.
Palavras-chave
Referências
  1. Aimond F, 1999, CARDIOVASC RES, V42, P402, DOI 10.1016/S0008-6363(99)00070-X
  2. Anker SD, 2021, NEW ENGL J MED, V385, P1451, DOI 10.1056/NEJMoa2107038
  3. Antoniou CK, 2017, EUR CARDIOL REV, V12, P112, DOI 10.15420/ecr.2017:16:1
  4. Antzelevitch Charles, 2011, Card Electrophysiol Clin, V3, P23, DOI 10.1016/j.ccep.2010.10.012
  5. Azam MA, 2021, LIFE SCI, V276, DOI 10.1016/j.lfs.2021.119440
  6. Baartscheer A, 2003, CARDIOVASC RES, V58, P99, DOI 10.1016/S0008-6363(02)00854-4
  7. Baartscheer A, 2017, DIABETOLOGIA, V60, P568, DOI 10.1007/s00125-016-4134-x
  8. Bartos DC, 2015, COMPR PHYSIOL, V5, P1423, DOI 10.1002/cphy.c140069
  9. Belardinelli L, 2006, HEART, V92, P6, DOI 10.1136/hrt.2005.078790
  10. Bers DM, 2014, ANNU REV PHYSIOL, V76, P107, DOI 10.1146/annurev-physiol-020911-153308
  11. Borges AA, 2021, J AM SOC NEPHROL, V32, P1616, DOI 10.1681/ASN.2020071029
  12. Chiriaco M, 2022, CURR OPIN PHARMACOL, V66, DOI 10.1016/j.coph.2022.102272
  13. Chung YJ, 2021, CARDIOVASC RES, V117, P2794, DOI 10.1093/cvr/cvaa323
  14. Colyer J, 1998, ANN NY ACAD SCI, V853, P79, DOI 10.1111/j.1749-6632.1998.tb08258.x
  15. Cordeiro JM, 2013, J MOL CELL CARDIOL, V60, P36, DOI 10.1016/j.yjmcc.2013.03.014
  16. Curtain JP, 2021, EUR HEART J, V42, P3727, DOI 10.1093/eurheartj/ehab560
  17. Davia K, 2001, J MOL CELL CARDIOL, V33, P1005, DOI 10.1006/jmcc.2001.1368
  18. Despa S, 2012, CARDIOVASC RES, V95, P480, DOI 10.1093/cvr/cvs213
  19. dos Santos DS, 2020, AM J PHYSIOL-CELL PH, V318, pC328, DOI 10.1152/ajpcell.00275.2019
  20. Dyck JRB, 2022, J MOL CELL CARDIOL, V167, P17, DOI 10.1016/j.yjmcc.2022.03.005
  21. Eroglu TE, 2022, EUR HEART J-CARD PHA, V9, P18, DOI 10.1093/ehjcvp/pvac043
  22. Frank K, 2000, ANN MED, V32, P572, DOI 10.3109/07853890008998837
  23. Ghezzi C, 2017, J AM SOC NEPHROL, V28, P802, DOI 10.1681/ASN.2016050510
  24. Grandy SA, 2007, AM J PHYSIOL-HEART C, V293, pH2168, DOI 10.1152/ajpheart.00521.2007
  25. Hammoudi N, 2017, CARDIOVASC DRUG THER, V31, P233, DOI 10.1007/s10557-017-6734-1
  26. Hegyi B, 2022, CIRCULATION, V145, P1029, DOI 10.1161/CIRCULATIONAHA.121.057237
  27. Janse MJ, 2001, J CARDIOVASC ELECTR, V12, P496, DOI 10.1046/j.1540-8167.2001.00496.x
  28. Jeevaratnam K, 2018, J CARDIOVASC PHARM T, V23, P119, DOI 10.1177/1074248417729880
  29. Jensen L, 2018, J CELL PHYSIOL, V233, P5420, DOI 10.1002/jcp.26380
  30. Joukar S, 2021, LAB ANIM RES, V37, DOI 10.1186/s42826-021-00102-3
  31. Kaab S, 1998, CIRCULATION, V98, P1383, DOI 10.1161/01.CIR.98.14.1383
  32. Karmazyn M, 1999, CIRC RES, V85, P777, DOI 10.1161/01.RES.85.9.777
  33. Karpushev AV, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23179559
  34. Kolesnik E, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23031678
  35. Kolijn D, 2021, CARDIOVASC RES, V117, P495, DOI 10.1093/cvr/cvaa123
  36. Korhonen T, 2009, BIOPHYS J, V96, P1189, DOI 10.1016/j.bpj.2008.10.026
  37. Lee JH, 2017, CELL STEM CELL, V21, P179, DOI 10.1016/j.stem.2017.07.003
  38. Lee TI, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20071680
  39. Li HL, 2021, CARDIOVASC DIABETOL, V20, DOI 10.1186/s12933-021-01293-8
  40. Li X, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.018298
  41. Lian XJ, 2013, NAT PROTOC, V8, P162, DOI 10.1038/nprot.2012.150
  42. Luo M, 2013, CIRC RES, V113, P690, DOI 10.1161/CIRCRESAHA.113.301651
  43. Maier LS, 2009, J CARDIOVASC PHARM, V54, P279, DOI 10.1097/FJC.0b013e3181a1b9e7
  44. Mattiazzi A, 2005, CARDIOVASC RES, V68, P366, DOI 10.1016/j.cardiores.2005.08.010
  45. McMurray JJV, 2019, NEW ENGL J MED, V381, P1995, DOI 10.1056/NEJMoa1911303
  46. Mesquita FCP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55837-w
  47. Mustroph J, 2018, ESC HEART FAIL, V5, P642, DOI 10.1002/ehf2.12336
  48. Neal B, 2017, NEW ENGL J MED, V377, P644, DOI 10.1056/NEJMoa1611925
  49. Pabel S, 2018, EUR J HEART FAIL, V20, P1690, DOI 10.1002/ejhf.1328
  50. Packer M, 2020, CIRC-HEART FAIL, V13, DOI 10.1161/CIRCHEARTFAILURE.120.007197
  51. Packer M, 2020, NEW ENGL J MED, V383, P1413, DOI 10.1056/NEJMoa2022190
  52. Packer M, 2017, JAMA CARDIOL, V2, P1025, DOI 10.1001/jamacardio.2017.2275
  53. Philippaert K, 2021, CIRCULATION, V143, P2188, DOI 10.1161/CIRCULATIONAHA.121.053350
  54. Pogwizd SM, 2003, CARDIOVASC RES, V57, P887, DOI 10.1016/S0008-6363(02)00735-6
  55. Quentin V, 2022, WORLD J DIABETES, V13, P683, DOI 10.4239/wjd.v13.i9.683
  56. Rao V, 2014, BIOPHYS J, V107, P1196, DOI 10.1016/j.bpj.2014.07.027
  57. Ravens U, 2008, EUROPACE, V10, P1133, DOI 10.1093/europace/eun193
  58. Scalzo S, 2021, CELL REP METHODS, V1, DOI 10.1016/j.crmeth.2021.100044
  59. Scalzo Sergio, 2022, STAR Protoc, V3, P101144, DOI 10.1016/j.xpro.2022.101144
  60. Scheen AJ, 2014, CLIN PHARMACOKINET, V53, P213, DOI 10.1007/s40262-013-0126-x
  61. Trum M, 2020, ESC HEART FAIL, V7, P4429, DOI 10.1002/ehf2.13024
  62. Uthman L, 2019, CARDIOVASC RES, V115, P1533, DOI 10.1093/cvr/cvz004
  63. Uthman L, 2018, DIABETOLOGIA, V61, P722, DOI 10.1007/s00125-017-4509-7
  64. Vallon V, 2011, J AM SOC NEPHROL, V22, P104, DOI 10.1681/ASN.2010030246
  65. Venturini G, 2023, FRONT CELL INFECT MI, V13, DOI 10.3389/fcimb.2023.1098457
  66. Verma S, 2016, DIABETES CARE, V39, pE212, DOI 10.2337/dc16-1312
  67. Wagner S, 2015, CIRC RES, V116, P1956, DOI 10.1161/CIRCRESAHA.116.304678
  68. Wiviott SD, 2019, NEW ENGL J MED, V380, P347, DOI 10.1056/NEJMoa1812389
  69. Xue GL, 2022, FRONT PHARMACOL, V13, DOI 10.3389/fphar.2022.988408
  70. Yokoyama H, 2000, J AM COLL CARDIOL, V36, P534, DOI 10.1016/S0735-1097(00)00730-0
  71. Zinman B, 2016, NEW ENGL J MED, V374, P1094, DOI 10.1056/NEJMc1600827
  72. Zuurbier CJ, 2021, CARDIOVASC RES, V117, P2699, DOI 10.1093/cvr/cvab129