The Trypanosoma cruzi Antigen and Epitope Atlas: antibody specificities in Chagas disease patients across the Americas

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
RICCI, Alejandro D.
BRACCO, Leonel
SALAS-SARDUY, Emir
RAMSEY, Janine M.
NOLAN, Melissa S.
LYNN, M. Katie
ALTCHEH, Jaime
BALLERING, Griselda E.
TORRICO, Faustino
Citação
NATURE COMMUNICATIONS, v.14, n.1, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
During an infection the immune system produces pathogen-specific antibodies. These antibody repertoires become specific to the history of infections and represent a rich source of diagnostic markers. However, the specificities of these antibodies are mostly unknown. Here, using high-density peptide arrays we examined the human antibody repertoires of Chagas disease patients. Chagas disease is a neglected disease caused by Trypanosoma cruzi, a protozoan parasite that evades immune mediated elimination and mounts long-lasting chronic infections. We describe a proteome-wide search for antigens, characterised their linear epitopes, and show their reactivity on 71 individuals from diverse human populations. Using single-residue mutagenesis we revealed the core functional residues for 232 of these epitopes. Finally, we show the diagnostic performance of identified antigens on challenging samples. These datasets enable the study of the Chagas antibody repertoire at an unprecedented depth and granularity, while also providing a rich source of serological biomarkers. This work reveals the diversity and extent of human antibody specificities in Chagas disease and provides a wealth of well-defined antigenic markers for diagnosis and development of serological applications for this neglected infectious disease.
Palavras-chave
Referências
  1. Abras A, 2016, J CLIN MICROBIOL, V54, P1566, DOI 10.1128/JCM.00142-16
  2. Balouz V, 2017, ADV PARASIT, V97, P1, DOI 10.1016/bs.apar.2016.10.001
  3. Bannard O, 2017, CURR OPIN IMMUNOL, V45, P21, DOI 10.1016/j.coi.2016.12.004
  4. Baptista RP, 2018, MICROB GENOMICS, V4, DOI 10.1099/mgen.0.000156
  5. Bartholomeu DC, 2009, NUCLEIC ACIDS RES, V37, P3407, DOI 10.1093/nar/gkp172
  6. Bermejo DA, 2011, IMMUNOLOGY, V132, P123, DOI 10.1111/j.1365-2567.2010.03347.x
  7. Bracamonte ME, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232829
  8. Breniere SF, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004792
  9. BUSCHIAZZO A, 1992, MOL BIOCHEM PARASIT, V54, P125, DOI 10.1016/0166-6851(92)90105-S
  10. Buus S, 2012, MOL CELL PROTEOMICS, V11, P1790, DOI 10.1074/mcp.M112.020800
  11. Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421
  12. Carmona SJ, 2015, MOL CELL PROTEOMICS, V14, P1871, DOI 10.1074/mcp.M114.045906
  13. CRISCI JV, 1991, SYST ZOOL, V40, P152, DOI 10.2307/2992254
  14. da Silveira JF, 2001, TRENDS PARASITOL, V17, P286, DOI 10.1016/S1471-4922(01)01897-9
  15. Di Noia JM, 2002, J EXP MED, V195, P401, DOI 10.1084/jem.20011433
  16. Di Nola JM, 2007, ANNU REV BIOCHEM, V76, P1, DOI 10.1146/annurev.biochem.76.061705.090740
  17. dos Santos SL, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001779
  18. Durante IM, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005986
  19. El-Sayed NM, 2005, SCIENCE, V309, P409, DOI 10.1126/science.1112631
  20. Feng YQ, 2020, TRENDS IMMUNOL, V41, P586, DOI 10.1016/j.it.2020.04.009
  21. Frank R., 1996, EPITOPE MAPPING PROT, P149, DOI [10.1385/0-89603-375-9:149, DOI 10.1385/0-89603-375-9:149]
  22. Franzen O, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-531
  23. Franzen O, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0000984
  24. GEYSEN HM, 1987, J IMMUNOL METHODS, V102, P259, DOI 10.1016/0022-1759(87)90085-8
  25. Granjon E, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004596
  26. Guzman-Gomez D, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1072-2
  27. Hansen LB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068902
  28. IBANEZ CF, 1988, MOL BIOCHEM PARASIT, V30, P27, DOI 10.1016/0166-6851(88)90129-6
  29. Kelly EA, 2021, J CLIN MICROBIOL, V59, DOI 10.1128/JCM.00158-21
  30. Kogot JM, 2012, BIOTECHNIQUES, V52, P95, DOI 10.2144/000113810
  31. Krause JC, 2011, J IMMUNOL, V187, P3704, DOI 10.4049/jimmunol.1101823
  32. Lagatie O, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005330
  33. Larsen Jens Erik Pontoppidan, 2006, Immunome Res, V2, P2, DOI 10.1186/1745-7580-2-2
  34. Leao AC, 2022, MICROBES INFECT, V24, DOI 10.1016/j.micinf.2022.104982
  35. Legutki JB, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5785
  36. Lewis MD, 2016, TRENDS PARASITOL, V32, P899, DOI 10.1016/j.pt.2016.08.009
  37. Lex A, 2014, IEEE T VIS COMPUT GR, V20, P1983, DOI 10.1109/TVCG.2014.2346248
  38. Malovichko G, 2017, ACS OMEGA, V2, P5445, DOI 10.1021/acsomega.7b00963
  39. Peverengo LM, 2018, PARASITOLOGY, V145, P1594, DOI [10.1017/S0031182018000458, 10.1017/s0031182018000458]
  40. Medina LJ, 2021, LANCET INFECT DIS, V21, P1141, DOI 10.1016/S1473-3099(20)30729-5
  41. Minoprio P, 2001, INT J PARASITOL, V31, P588, DOI 10.1016/S0020-7519(01)00171-0
  42. Moure Z, 2016, CLIN MICROBIOL INFEC, V22, P788, DOI 10.1016/j.cmi.2016.06.001
  43. Nothelfer K, 2015, NAT REV MICROBIOL, V13, P173, DOI 10.1038/nrmicro3415
  44. Osterbye T, 2020, J IMMUNOL, V205, P290, DOI 10.4049/jimmunol.2000224
  45. Peeling RW, 2017, COMPUT STRUCT BIOTEC, V15, P271, DOI 10.1016/j.csbj.2017.02.003
  46. Peeling RW, 2015, INT HEALTH, V7, P384, DOI 10.1093/inthealth/ihv062
  47. Pellois JP, 2002, NAT BIOTECHNOL, V20, P922, DOI 10.1038/nbt723
  48. Nunes MCP, 2018, CIRCULATION, V138, pE169, DOI 10.1161/CIR.0000000000000599
  49. Perez-Mazliah D, 2021, PARASITE IMMUNOL, V43, DOI 10.1111/pim.12786
  50. Perez-Molina JA, 2018, LANCET, V391, P82, DOI 10.1016/S0140-6736(17)31612-4
  51. Reineke U, 2009, METHODS MOL BIOL, V524, P145, DOI 10.1007/978-1-59745-450-6_11
  52. Ricci Alejandro, 2023, Zenodo, DOI 10.5281/ZENODO.7696856
  53. Ricci ADD, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.702552
  54. Sosa-Estani S, 2008, AM J TROP MED HYG, V79, P755, DOI 10.4269/ajtmh.2008.79.755
  55. Souza RT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023042
  56. Studier FW, 2005, PROTEIN EXPRES PURIF, V41, P207, DOI 10.1016/j.pep.2005.01.016
  57. Umezawa ES, 1996, J CLIN MICROBIOL, V34, P2143, DOI 10.1128/JCM.34.9.2143-2147.1996
  58. Umezawa ES, 1999, J CLIN MICROBIOL, V37, P1554, DOI 10.1128/JCM.37.5.1554-1560.1999
  59. Vengesai A, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0248666
  60. Verani JR, 2009, AM J TROP MED HYG, V80, P410
  61. Vita R, 2019, NUCLEIC ACIDS RES, V47, pD339, DOI 10.1093/nar/gky1006
  62. Ward AI, 2020, MBIO, V11, DOI 10.1128/mBio.01242-20
  63. Warrenfeltz S, 2018, METHODS MOL BIOL, V1757, P69, DOI 10.1007/978-1-4939-7737-6_5
  64. WHO, 2012, WORLD MALARIA REPORT 2012, P1
  65. Wiener Laboratorios, 2000, CHAG ELISA REC V 4 0
  66. Wilf P, 2013, ANNU REV EARTH PL SC, V41, P561, DOI 10.1146/annurev-earth-050212-124217
  67. Xiao N, 2015, BIOINFORMATICS, V31, P1857, DOI 10.1093/bioinformatics/btv042
  68. Xu R, 2013, NAT STRUCT MOL BIOL, V20, P363, DOI 10.1038/nsmb.2500
  69. Yan YQ, 2019, CANCER RES, V79, P1549, DOI 10.1158/0008-5472.CAN-18-1536
  70. YOUDEN WJ, 1950, BIOMETRICS, V6, P172, DOI 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
  71. Zhang L, 1999, J INFECT DIS, V180, P480, DOI 10.1086/314889
  72. Zhang Y, 2022, NAT REV IMMUNOL, V22, P550, DOI 10.1038/s41577-022-00679-3
  73. Zingales B, 2018, ACTA TROP, V184, P38, DOI 10.1016/j.actatropica.2017.09.017