An ancient founder mutation located between ROBO1 and ROBO2 is responsible for increased microtia risk in Amerindigenous populations

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATL ACAD SCIENCES
Autores
QUIAT, Daniel
KIM, Seong Won
ZHANG, Qi
MORTON, Sarah U.
DEPALMA, Steven R.
WILLCOX, Jon A. L.
MCDONOUGH, Barbara
DELAUGHTER, Daniel M.
GORHAM, Joshua M.
Citação
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.119, n.21, article ID e2203928119, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Microtia is a congenital malformation that encompasses mild hypoplasia to complete loss of the external ear, or pinna. Although the contribution of genetic variation and environmental factors to microtia remains elusive, Amerindigenous populations have the highest reported incidence. Here, using both transmission disequilibrium tests and association studies in microtia trios (parents and affected child) and microtia cohorts enrolled in Latin America, we map an similar to 10-kb microtia locus (odds ratio = 4.7; P = 6.78e-18) to the intergenic region between Roundabout 1 (ROBO1) and Roundabout 2 (ROBO2) (chr3: 78546526 to 78555137). While alleles at the microtia locus significantly increase the risk of microtia, their penetrance is low (<1%). We demonstrate that the microtia locus contains a polymorphic complex repeat element that is expanded in affected individuals. The locus is located near a chromatin loop region that regulates ROBO1 and ROBO2 expression in induced pluripotent stem cell-derived neural crest cells. Furthermore, we use single nuclear RNA sequencing to demonstrate ROBO1 and ROBO2 expression in both fibroblasts and chondrocytes of the mature human pinna. Because the microtia allele is enriched in Amerindigenous populations and is shared by some East Asian subjects with craniofacial malformations, we propose that both populations share a mutation that arose in a common ancestor prior to the ancient migration of Eurasian populations into the Americas and that the high incidence of microtia among Amerindigenous populations reflects the population bottleneck that occurred during the migration out of Eurasia.
Palavras-chave
microtia, cniofacial microsomia, ancestry
Referências
  1. Abdelhak S, 1997, NAT GENET, V15, P157, DOI 10.1038/ng0297-157
  2. Alasti F, 2008, AM J HUM GENET, V82, P982, DOI 10.1016/j.ajhg.2008.02.015
  3. Alexander NL, 2020, INT J PEDIATR OTORHI, V136, DOI 10.1016/j.ijporl.2020.110211
  4. [Anonymous], 1996, Nat Genet, V12, P130
  5. Artunduaga MA, 2009, NEW ENGL J MED, V361, P1216, DOI 10.1056/NEJMc0902556
  6. Bashamboo A, 2017, J CLIN ENDOCR METAB, V102, P2401, DOI 10.1210/jc.2016-1095
  7. Blockus H, 2016, DEVELOPMENT, V143, P3037, DOI 10.1242/dev.132829
  8. Brandstetter KA, 2016, FACIAL PLAST SURG CL, V24, P495, DOI 10.1016/j.fsc.2016.06.006
  9. Brown KK, 2013, HUM MUTAT, V34, P1347, DOI 10.1002/humu.22367
  10. Browning SR, 2018, CELL, V173, P53, DOI 10.1016/j.cell.2018.02.031
  11. Bryc K, 2010, P NATL ACAD SCI USA, V107, P8954, DOI 10.1073/pnas.0914618107
  12. CASTILLA EE, 1986, INT J EPIDEMIOL, V15, P364, DOI 10.1093/ije/15.3.364
  13. Castilla EE, 1999, AM J MED GENET, V86, P9, DOI 10.1002/(SICI)1096-8628(19990903)86:1<9::AID-AJMG3>3.0.CO;2-X
  14. Collins RL, 2020, NATURE, V581, P444, DOI 10.1038/s41586-020-2287-8
  15. Cordero DR, 2011, AM J MED GENET A, V155A, P270, DOI 10.1002/ajmg.a.33702
  16. Zernotti ME, 2019, ACTA OTORRINOLAR ESP, V70, P32, DOI 10.1016/j.otorri.2017.10.006
  17. Fagundes NJR, 2018, GENET MOL BIOL, V41, P206, DOI [10.1590/1678-4685-GMB-2017-0087, 10.1590/1678-4685-gmb-2017-0087]
  18. Forrester Mathias B., 2005, Congenital Anomalies, V45, P119, DOI 10.1111/j.1741-4520.2005.00080.x
  19. Geisen MJ, 2008, PLOS BIOL, V6, P1178, DOI 10.1371/journal.pbio.0060142
  20. Gendron C, 2016, J PEDIATR GENET, V5, P189, DOI 10.1055/s-0036-1592422
  21. Harris J, 1996, J MED GENET, V33, P809, DOI 10.1136/jmg.33.10.809
  22. Homburger JR, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005602
  23. Hoskins BE, 2007, AM J HUM GENET, V80, P800, DOI 10.1086/513322
  24. JAFFE BF, 1969, LARYNGOSCOPE, V79, P2126, DOI 10.1288/00005537-196912000-00007
  25. Jin FL, 2013, NATURE, V503, P290, DOI 10.1038/nature12644
  26. Kazeem GR, 2005, ANN HUM GENET, V69, P329, DOI 10.1046/j.1529-8817.2005.00156.x
  27. Keogh IJ, 2007, ARCH OTOLARYNGOL, V133, P997, DOI 10.1001/archotol.133.10.997
  28. Li Y, 2017, EXP CELL RES, V361, P73, DOI 10.1016/j.yexcr.2017.10.002
  29. Long A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189990
  30. Long HK, 2020, CELL STEM CELL, V27, P765, DOI 10.1016/j.stem.2020.09.001
  31. Lu WN, 2007, AM J HUM GENET, V80, P616, DOI 10.1086/512735
  32. Luquetti DV, 2020, MOL GENET GENOM MED, V8, DOI 10.1002/mgg3.1401
  33. Luquetti DV, 2011, BIRTH DEFECTS RES A, V91, P813, DOI 10.1002/bdra.20836
  34. Maples BK, 2013, AM J HUM GENET, V93, P278, DOI 10.1016/j.ajhg.2013.06.020
  35. Minikel EV, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aad5169
  36. Minoux M, 2017, SCIENCE, V355, DOI 10.1126/science.aal2913
  37. Montana G, 2004, AM J HUM GENET, V75, P771, DOI 10.1086/425281
  38. Mukhopadhyay N, 2020, HUM GENET, V139, P215, DOI 10.1007/s00439-019-02099-1
  39. NELSON SM, 1984, LARYNGOSCOPE, V94, P316
  40. Nicodemus KK, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-130
  41. Poplin R., 2017, BIORXIV, DOI [DOI 10.1101/201178, 10.1101/201178v3]
  42. Raghavan M, 2015, SCIENCE, V349, DOI 10.1126/science.aab3884
  43. Rao SSP, 2014, CELL, V159, P1665, DOI 10.1016/j.cell.2014.11.021
  44. Reich D, 2012, NATURE, V488, P370, DOI 10.1038/nature11258
  45. Scarpa E, 2015, DEV CELL, V34, P421, DOI 10.1016/j.devcel.2015.06.012
  46. Shaffer JR, 2017, AM J HUM GENET, V101, P913, DOI 10.1016/j.ajhg.2017.10.001
  47. Sharma A, 2020, ELIFE, V9, DOI 10.7554/eLife.53278
  48. Sirugo G, 2019, CELL, V177, P1080, DOI 10.1016/j.cell.2019.04.032
  49. SPIELMAN RS, 1993, AM J HUM GENET, V52, P506
  50. Tarskaia L. A., 2004, Genetika, V40, P1530
  51. Tekin M, 2007, AM J HUM GENET, V80, P338, DOI 10.1086/510920
  52. Wall JD, 2011, MOL BIOL EVOL, V28, P2231, DOI 10.1093/molbev/msr049
  53. Wilderman A, 2018, CELL REP, V23, P1581, DOI 10.1016/j.celrep.2018.03.129
  54. Willems T, 2017, NAT METHODS, V14, P590, DOI [10.1038/NMETH.4267, 10.1038/nmeth.4267]
  55. Zhang YB, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10605