Evaluation of a new treadmill exercise protocol to unmask type 1 Brugada electrocardiographic pattern: can we improve diagnostic yield?

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
EUROPACE, v.25, n.7, article ID euad157, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aims High precordial leads (HPL) on the resting electrocardiogram (ECG) are widely used to improve diagnostic detection of type 1 Brugada ECG pattern (Br1ECGp). A parasympathetic activation marks the initial recovery phase of treadmill stress testing (TET), and this can be useful for detecting the typical ECG pattern. Our study aimed to evaluate the role of a new HPL-treadmill exercise testing (TET) protocol in detecting Br1ECGp fluctuation compared to resting HPL-ECG. Methods and results 74 out of 163 patients of a Brugada syndrome (BrS) Brazilian cohort (GenBra Registry) underwent exercise testing with HPL-TET protocol. Precordial leads were displayed in strategic positions in the right and left parasternal spaces. The step-by-step analysis included ECG classification (as presence or absence of Br1ECGp) in standard vs. HPL leads placement in the following sequences: resting phase, maximal exercise, and the passive recovery phase (including 'quick lay down'). For heart rate recovery (HRR) measurements and comparisons, a Student's t-test was applied. McNemar tests compared the detection of Br1ECGp. The significance level was defined as P < 0.05. Fifty-seven patients (57/74; 77%) were male, the mean age was 49.0 & PLUSMN; 14, 78.4% had spontaneous BrS, and the mean Shanghai score was 4.5. The HPL-TET protocol increased Br1ECGp detection by 32.4% against resting HPL-ECG (52.7% vs. 20.3%, P = 0.001) alone. Conclusion Stress testing using HPL with the passive recovery phase in the supine position offers an opportunity to unmask the type 1 Br1ECGp, which could increase the diagnostic yield in this population.
Palavras-chave
Brugada syndrome, Type 1 Brugada ECG pattern, Treadmill exercise testing, Diagnosis
Referências
  1. Amin AS, 2009, CIRC-ARRHYTHMIA ELEC, V2, P531, DOI 10.1161/CIRCEP.109.862441
  2. ARAI Y, 1989, AM J PHYSIOL, V256, pH132, DOI 10.1152/ajpheart.1989.256.1.H132
  3. Arena R, 2007, CIRCULATION, V116, P329, DOI 10.1161/CIRCULATIONAHA.106.184461
  4. Batchvarov VN, 2009, PACE, V32, P695, DOI 10.1111/j.1540-8159.2009.02353.x
  5. Behr ER, 2022, EUROPACE, V24, P331, DOI 10.1093/europace/euab176
  6. Brugada J, 2015, CIRC-ARRHYTHMIA ELEC, V8, P1373, DOI 10.1161/CIRCEP.115.003220
  7. Calvo M, 2017, PHYSIOL MEAS, V38, P387, DOI 10.1088/1361-6579/aa513c
  8. Calvo M, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197367
  9. Cerrato N, 2015, AM J CARDIOL, V115, P52, DOI 10.1016/j.amjcard.2014.10.007
  10. Gibbons RJ, 2002, CIRCULATION, V106, P1883, DOI 10.1161/01.CIR.0000034670.06526.15
  11. Giudicessi JR, 2019, HEART RHYTHM, V16, P1232, DOI 10.1016/j.hrthm.2019.02.012
  12. Gray B, 2017, HEART RHYTHM, V14, P866, DOI 10.1016/j.hrthm.2017.02.026
  13. Grimster A, 2008, EUROPACE, V10, P897, DOI 10.1093/europace/eun101
  14. Honarbakhsh S, 2021, JACC-CLIN ELECTROPHY, V7, P210, DOI 10.1016/j.jacep.2020.08.032
  15. IMAI K, 1994, J AM COLL CARDIOL, V24, P1529, DOI 10.1016/0735-1097(94)90150-3
  16. Jayasuriya C, 2011, EUROPACE, V13, P446, DOI 10.1093/europace/euq366
  17. Kawada S, 2018, JACC-CLIN ELECTROPHY, V4, P724, DOI 10.1016/j.jacep.2018.02.009
  18. Lahiri MK, 2008, J AM COLL CARDIOL, V51, P1725, DOI 10.1016/j.jacc.2008.01.038
  19. Leong KMW, 2021, EUROPACE, V23, P305, DOI 10.1093/europace/euaa248
  20. Makimoto H, 2010, J AM COLL CARDIOL, V56, P1576, DOI 10.1016/j.jacc.2010.06.033
  21. Marquez MF, 2007, EUROPACE, V9, P1216, DOI 10.1093/europace/eum229
  22. Masrur S, 2015, CLIN CARDIOL, V38, P323, DOI 10.1002/clc.22386
  23. Miyamoto K, 2007, AM J CARDIOL, V99, P53, DOI 10.1016/j.amjcard.2006.07.062
  24. Miyazaki T, 1996, J AM COLL CARDIOL, V27, P1061, DOI 10.1016/0735-1097(95)00613-3
  25. Papadakis M, 2018, J AM COLL CARDIOL, V71, P1204, DOI 10.1016/j.jacc.2018.01.031
  26. Probst V, 2010, CIRCULATION, V121, P635, DOI 10.1161/CIRCULATIONAHA.109.887026
  27. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  28. Sacilotto L, 2020, J CARDIOVASC ELECTR, V31, P2920, DOI 10.1111/jce.14732
  29. Sangwatanaroj S, 2001, EUR HEART J, V22, P2290, DOI 10.1053/euhj.2001.2691
  30. Shimizu W, 2000, J CARDIOVASC ELECTR, V11, P396, DOI 10.1111/j.1540-8167.2000.tb00334.x
  31. Shun-Shin MJ, 2019, EUROPACE, V21, P1422, DOI 10.1093/europace/euz015
  32. Meneghelo RS, 2010, Arq. Bras. Cardiol., V95, P1, DOI 10.1590/S0066-782X2010000800001
  33. Stazi F, 2022, EUR HEART J SUPPL, V24, pI165, DOI 10.1093/eurheartjsupp/suac088
  34. Subramanian M, 2017, J CARDIOVASC ELECTR, V28, P677, DOI 10.1111/jce.13205
  35. Zeppenfeld K, 2022, EUR HEART J, V43, P3997, DOI 10.1093/eurheartj/ehac262
  36. Zorzi A, 2018, EUR J PREV CARDIOL, V25, P2003, DOI 10.1177/2047487318797396