Fibronectin glycation increases IGF-I induced proliferation of human aortic smooth muscle cells

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
AZEVEDO, Maria Regina Andrade de
LEROITH, Derek
Citação
DIABETOLOGY & METABOLIC SYNDROME, v.4, article ID 19, 9p, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.
Palavras-chave
Diabetes mellitus, Advanced glycation end products (AGE), Smooth muscle cells, PDGF, IGF-I, IGFBP-4
Referências
  1. BANG P, 1991, ACTA ENDOCRINOL-COP, V124, P620
  2. Bayes-Genis A, 2001, ARTERIOSCL THROM VAS, V21, P335
  3. BORNFELDT KE, 1990, J ENDOCRINOL, V125, P381, DOI 10.1677/joe.0.1250381
  4. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999
  5. BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315
  6. BROWNLEE M, 1994, DIABETES, V43, P836
  7. Cai Q, 2011, BIOSCI BIOTECH BIOCH, V75, P1692, DOI 10.1271/bbb.110194
  8. Cantero AV, 2007, FASEB J, V21, P3096, DOI 10.1096/fj.06-7536com
  9. CHARONIS AS, 1990, DIABETES, V39, P807, DOI 10.2337/diabetes.39.7.807
  10. Chisalita SI, 2009, J MOL ENDOCRINOL, V43, P231, DOI 10.1677/JME-09-0021
  11. CLEMMONS DR, 1985, ENDOCRINOLOGY, V117, P77
  12. CLEMMONS DR, 1989, MOLECULAR AND CELLULAR BIOLOGY OF INSULIN-LIKE GROWTH FACTORS AND THEIR RECEPTORS, P381
  13. COHEN MP, 1984, DIABETES, V33, P970, DOI 10.2337/diabetes.33.10.970
  14. COHICK WS, 1995, J CELL PHYSIOL, V164, P187, DOI 10.1002/jcp.1041640123
  15. COHICK WS, 1993, J CELL PHYSIOL, V157, P52, DOI 10.1002/jcp.1041570107
  16. Conover CA, 2006, AM J PHYSIOL-CELL PH, V290, pC183, DOI 10.1152/ajpcell.00199.2005
  17. David KC, 2008, BIOCHEM PHARMACOL, V76, P1110, DOI 10.1016/j.bcp.2008.08.011
  18. de Lacerda L, 1999, CLIN ENDOCRINOL, V51, P541, DOI 10.1046/j.1365-2265.1999.00799.x
  19. Delafontaine P, 2004, ARTERIOSCL THROM VAS, V24, P435, DOI 10.1161/01.ATV.0000105902.89459.09
  20. DELAFONTAINE P, 1991, HYPERTENSION, V18, P742
  21. Duan CM, 1998, J BIOL CHEM, V273, P16836, DOI 10.1074/jbc.273.27.16836
  22. GIANNELLANETO D, 1992, CIRC RES, V71, P646
  23. KATO H, 1993, J BIOL CHEM, V268, P2655
  24. King GL, 1996, DIABETS, V45, P105
  25. KIRSTEIN M, 1992, J CLIN INVEST, V90, P439, DOI 10.1172/JCI115879
  26. KIRSTEIN M, 1990, P NATL ACAD SCI USA, V87, P9010, DOI 10.1073/pnas.87.22.9010
  27. Kislinger T, 1999, J BIOL CHEM, V274, P31740, DOI 10.1074/jbc.274.44.31740
  28. LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
  29. Lander HM, 1997, J BIOL CHEM, V272, P17810, DOI 10.1074/jbc.272.28.17810
  30. LOWE WL, 1987, P NATL ACAD SCI USA, V84, P8946, DOI 10.1073/pnas.84.24.8946
  31. MUNSON PJ, 1980, ANAL BIOCHEM, V107, P220, DOI 10.1016/0003-2697(80)90515-1
  32. OREKHOV AN, 1984, ATHEROSCLEROSIS, V53, P213, DOI 10.1016/0021-9150(84)90197-7
  33. Park' L, 1998, NAT MED, V4, P1025, DOI 10.1038/2012
  34. PEREZREYES N, 1992, P NATL ACAD SCI USA, V89, P1224, DOI 10.1073/pnas.89.4.1224
  35. PONGOR S, 1984, P NATL ACAD SCI-BIOL, V81, P2684, DOI 10.1073/pnas.81.9.2684
  36. Resch ZT, 2006, ENDOCRINOLOGY, V147, P885, DOI 10.1210/en.2005-0908
  37. Resch ZT, 2004, ENDOCRINOLOGY, V145, P1124, DOI 10.1210/en.2003-1313
  38. ROSS R, 1993, NATURE, V362, P801, DOI 10.1038/362801a0
  39. Satoh H, 1997, BIOCHEM BIOPH RES CO, V239, P111, DOI 10.1006/bbrc.1997.7424
  40. Schalkwijk CG, 2010, AMINO ACIDS
  41. SCHWARTZ CJ, 1992, DIABETES CARE, V15, P1156, DOI 10.2337/diacare.15.9.1156
  42. Seki N, 2003, METABOLISM, V52, P1558, DOI 10.1016/S0026-0495(03)00384-6
  43. SHIMASAKI S, 1990, MOL ENDOCRINOL, V4, P1451
  44. STAMLER J, 1993, DIABETES CARE, V16, P434, DOI 10.2337/diacare.16.2.434
  45. STANNARD B, 1995, ENDOCRINOLOGY, V136, P4918, DOI 10.1210/en.136.11.4918
  46. STENMAN S, 1980, ACTA MED SCAND, P165
  47. STILES CD, 1979, P NATL ACAD SCI USA, V76, P1279, DOI 10.1073/pnas.76.3.1279
  48. THYBERG J, 1990, ARTERIOSCLEROSIS, V10, P966
  49. TSILIBARY EC, 1988, J BIOL CHEM, V263, P4302
  50. VISSERS MCM, 1991, ARCH BIOCHEM BIOPHYS, V285, P357, DOI 10.1016/0003-9861(91)90372-P
  51. VLASSARA H, 1994, J LAB CLIN MED, V124, P19
  52. VLASSARA H, 1988, SCIENCE, V240, P1546, DOI 10.1126/science.3259727
  53. Wang Ruojiao, 2001, Journal of Nippon Medical School, V68, P472, DOI 10.1272/jnms.68.472