Multicellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repair

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
PORTLAND PRESS LTD
Citação
CLINICAL SCIENCE, v.136, n.17, p.1281-1301, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cardiac transplantation of adipose-derived stem cells (ASC) modulates the post-myocardial infarction (post-MI) repair response. Biomolecules secreted or shuttled within extracellular vesicles, such as exosomes, may participate in the concerted response. We investigated the exosome’s microRNAs due to their capacity to fine-tune gene expression, potentially affecting the multicellular repair response. We profiled and quantified rat ASC-exosome miRNAs and used bioinformatics to select uncharacterized miRNAs down-regulated in post-MI related to cardiac repair. We selected and validated miR-196a-5p and miR-425-5p as candidates for the concerted response in neonatal cardiomyocytes, cardiac fibroblasts, endothelial cells, and macrophages using a high-content screening platform. Both miRNAs prevented cardiomyocyte ischemia-induced mitochondrial dysfunction and reactive oxygen species production, increased angiogenesis, and polarized macrophages toward the anti-inflammatory M2 immunophenotype. Moreover, miR-196a-5p reduced and reversed myofibroblast activation and decreased collagen expression. Our data provide evidence that the exosome-derived miR-196a-5p and miR-425-5p influence biological processes critical to the concerted multicellular repair response post-MI. © 2022 The Author(s).
Palavras-chave
Referências
  1. Porrello E.R., Mahmoud A.I., Simpson E., Hill J.A., Richardson J.A., Olson E.N., Et al., Transient regenerative potential of the neonatal mouse heart, Science, 331, pp. 1078-1080, (2011)
  2. Zogbi C., Saturi de Carvalho A.E.T., Nakamuta J.S., de M., Caceres V., Prando S., Et al., Early postnatal rat ventricle resection leads to long-term preserved cardiac function despite tissue hypoperfusion, Physiol. Rep, 2, (2014)
  3. Wang Z., Cui M., Shah A.M., Ye W., Tan W., Min Y.L., Et al., Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling, Proc. Natl. Acad. Sci. U.S.A, 116, pp. 18455-18465, (2019)
  4. Dariolli R., Naghetini M.V., Marques E.F., Takimura C.K., Jensen L.S., Kiers B., Et al., Allogeneic pASC transplantation in humanized pigs attenuates cardiac remodeling post-myocardial infarction, PLoS ONE, 12, (2017)
  5. Burnett H., Earley A., Voors A.A., Senni M., McMurray J.J.V., Deschaseaux C., Et al., Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction: a network meta-analysis, Circ. Heart Fail, 10, (2017)
  6. Frangogiannis N.G., Matricellular proteins in cardiac adaptation and disease, Physiol. Rev, 92, pp. 635-688, (2012)
  7. Frangogiannis N.G., Pathophysiology of myocardial infarction, Compr. Physiol, 5, pp. 1841-1875, (2015)
  8. Frangogiannis N.G., The inflammatory response in myocardial injury, repair, and remodelling, Nat. Rev. Cardiol, 11, pp. 255-265, (2014)
  9. Ma Y., De Castro Bras L.E., Toba H., Iyer R.P., Hall M.E., Winniford M.D., Et al., Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling, Pflugers Arch, 466, pp. 1113-1127, (2014)
  10. Xin M., Olson E.N., Bassel-Duby R., Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair, Nat. Rev. Mol. Cell Biol, 14, pp. 529-541, (2013)
  11. Cai L., Johnstone B.H., Cook T.G., Tan J., Fishbein M.C., Chen P.-S., Et al., IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function, Stem Cells, 27, pp. 230-237, (2009)
  12. Dai W., Hale S.L., Kloner R.A., Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats, Regen. Med, 2, pp. 63-68, (2007)
  13. Danieli P., Malpasso G., Ciuffreda M.C., Gnecchi M., Testing the paracrine properties of human mesenchymal stem cells using conditioned medium, Methods Mol. Biol, 1416, pp. 445-456, (2016)
  14. Gallina C., Turinetto V., Giachino C., A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome, Stem Cells Int, 2015, (2015)
  15. Gnecchi M., Danieli P., Malpasso G., Ciuffreda M.C., Paracrine mechanisms of mesenchymal stem cells in tissue repair, Methods Mol. Biol, 1416, pp. 123-146, (2016)
  16. Gnecchi M., He H., Liang O.D., Melo L.G., Morello F., Mu H., Et al., Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells, Nat. Med, 11, pp. 367-368, (2005)
  17. Leiker M., Suzuki G., Iyer V.S., Canty J.M., Lee T., Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells, Cell Transplant, 17, pp. 911-922, (2008)
  18. Danoviz M.E., Nakamuta J.S., Marques F.L.N., dos Santos L., Alvarenga E.C., dos Santos A.A., Et al., Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention, PLoS ONE, 5, (2010)
  19. Colombo M., Raposo G., Thery C., Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles, Annu. Rev. Cell Dev. Biol, 30, pp. 255-289, (2014)
  20. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol, 9, pp. 654-659, (2007)
  21. Van Niel G., D'Angelo G., Raposo G., Shedding light on the cell biology of extracellular vesicles, Nat. Rev. Mol. Cell Biol, 19, pp. 213-228, (2018)
  22. Garcia-Martin R., Wang G., Brandao B.B., Zanotto T.M., Shah S., Kumar Patel S., Et al., MicroRNA sequence codes for small extracellular vesicle release and cellular retention, Nature, 601, pp. 446-451, (2022)
  23. Eulalio A., Mano M., Ferro M.D., Zentilin L., Sinagra G., Zacchigna S., Et al., Functional screening identifies miRNAs inducing cardiac regeneration, Nature, 492, pp. 376-381, (2012)
  24. Ferguson S.W., Wang J., Lee C.J., Liu M., Neelamegham S., Canty J.M., Et al., The microRNA regulatory landscape of MSC-derived exosomes: a systems view, Sci. Rep, 8, pp. 1-12, (2018)
  25. Verjans R., Derks W.J.A., Korn K., Sonnichsen B., van Leeuwen R.E.W., Schroen B., Et al., Functional screening identifies MicroRNAs as multi-cellular regulators of heart failure, Sci. Rep, 9, pp. 1-15, (2019)
  26. Song Y., Zhang C., Zhang J., Jiao Z., Dong N., Wang G., Et al., Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction, Theranostics, 9, pp. 2346-2360, (2019)
  27. Peoples J.N., Saraf A., Ghazal N., Pham T.T., Kwong J.Q., Mitochondrial dysfunction and oxidative stress in heart disease, Exp. Mol. Med, 51, pp. 1-13, (2019)
  28. Thery C., Amigorena S., Raposo G., Clayton A., Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol, (2006)
  29. Liang X., Zhang L., Wang S., Han Q., Zhao R.C., Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a, J. Cell Sci, 129, pp. 2182-2189, (2016)
  30. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, pp. 676-682, (2012)
  31. Zhou X.L., Fang Y.-H., Wan L., Xu Q.-R., Huang H., Zhu R.-R., Et al., Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling, J. Cell. Physiol, 234, pp. 8834-8845, (2019)
  32. Jensen L., Neri E., Bassaneze V., De Almeida Oliveira N.C., Dariolli R., Turaca L.T., Et al., Integrated molecular, biochemical, and physiological assessment unravels key extraction method mediated influences on rat neonatal cardiomyocytes, J. Cell. Physiol, 233, pp. 5420-5430, (2018)
  33. Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Et al., CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biol, 7, (2006)
  34. Riccardi C., Nicoletti I., Analysis of apoptosis by propidium iodide staining and flow cytometry, Nat. Protoc, 1, pp. 1458-1461, (2006)
  35. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, pp. 402-408, (2001)
  36. Ru Y., Kechris K.J., Tabakoff B., Hoffman P., Radcliffe R.A., Bowler R., Et al., The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations, Nucleic Acids Res, 42, (2014)
  37. Csardi G., Nepusz T., The igraph software package for complex network research
  38. Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Et al., clusterProfiler 4.0: a universal enrichment tool for interpreting omics data, Innov. (New York, NY), 2, (2021)
  39. Huang D.W., Sherman B.T., Lempicki R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, 4, pp. 44-57, (2009)
  40. Nakada Y., Canseco D.C., Thet S., Abdisalaam S., Asaithamby A., Santos C.X., Et al., Hypoxia induces heart regeneration in adult mice, Nature, 541, pp. 222-227, (2017)
  41. Guimaraes-Camboa N., Stowe J., Aneas I., Sakabe N., Cattaneo P., Henderson L., Et al., HIF1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes, Dev. Cell, 33, pp. 507-521, (2015)
  42. Zhu D., Wang Y., Thomas M., McLaughlin K.A., Oguljahan B., Henderson J., Et al., Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway, J. Mol. Cell Cardiol, 162, pp. 10-19, (2022)
  43. Gabisonia K., Prosdocimo G., Aquaro G.D., Carlucci L., Zentilin L., Secco I., Et al., MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs, Nature, 569, pp. 418-422, (2019)
  44. Xin T., Lv W., Liu D., Jing Y., Hu F., Opa1 reduces hypoxia-induced cardiomyocyte death by improving mitochondrial quality control, Front. Cell Dev. Biol, 8, (2020)
  45. Zhou H., Hu S., Jin Q., Shi C., Zhang Y., Zhu P., Et al., Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening, J. Am. Heart Assoc, 6, (2017)
  46. Zhang Y., Wang Y., Xu J., Tian F., Hu S., Chen Y., Et al., Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways, J. Pineal Res, 66, (2019)
  47. Ong S.B., Subrayan S., Lim S.Y., Yellon D.M., Davidson S.M., Hausenloy D.J., Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury, Circulation, 121, pp. 2012-2022, (2010)
  48. Liu B., Che W., Zheng C., Liu W., Wen J., Fu H., Et al., SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes, Cell. Physiol. Biochem, 32, pp. 1050-1059, (2013)
  49. Buler M., Aatsinki S.M., Izzi V., Uusimaa J., Hakkola J., SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism, FASEB J, 28, pp. 3225-3237, (2014)
  50. Xin T., Lu C., Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction, Aging (Albany NY), 12, pp. 4474-4488, (2020)
  51. Suman M., Sharpe J.A., Bentham R.B., Kotiadis V.N., Menegollo M., Pignataro V., Et al., Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients, Hum. Mol. Genet, 27, pp. 2367-2382, (2018)
  52. Seidlmayer L.K., Mages C., Berbner A., Eder-Negrin P., Arias-Loza P.A., Kaspar M., Et al., Mitofusin 2 is essential for IP 3-mediated SR/mitochondria metabolic feedback in ventricular myocytes, Front. Physiol, 10, (2019)
  53. Li J., Zheng C., Wang M., Umano A.D., Dai Q., Zhang C., Et al., ROS-regulated phosphorylation of ITPKB by CAMK2G drives cisplatin resistance in ovarian cancer, Oncogene, 41, pp. 1114-1128, (2022)
  54. Liu B., Wang B., Zhang X., Lock R., Nash T., Vunjak-Novakovic G., Cell type-specific microRNA therapies for myocardial infarction, Sci. Transl. Med, 13, (2021)
  55. Ma T., Chen Y., Chen Y., Meng Q., Sun J., Shao L., Et al., MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction, Stem Cells Int, 2018, (2018)
  56. McGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Et al., The biochemical basis of microRNA targeting efficacy, Science (80-), 366, (2019)
  57. Revelo X.S., Parthiban P., Chen C., Barrow F., Fredrickson G., Wang H., Et al., Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis, Circ. Res, 129, pp. 1086-1101, (2021)
  58. Gao Y., Qian N., Xu J., Wang Y., The roles of macrophages in heart regeneration and repair after injury, Front. Cardiovasc. Med, 8, pp. 1-10, (2021)
  59. Deng S., Zhou X., Ge Z., Song Y., Wang H., Liu X., Et al., Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization, Int. J. Biochem. Cell Biol, 114, (2019)
  60. Sierra-Filardi E., Puig-Kroger A., Blanco F.J., Nieto C., Bragado R., Palomero M.I., Et al., Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers, Blood, 117, pp. 5092-5101, (2011)
  61. Yong K.W., Li Y., Liu F., Gao B., Lu T.J., Wan Abas W.A.B., Et al., Paracrine effects of adipose-derived stem cells on matrix stiffness-induced cardiac myofibroblast differentiation via angiotensin II type 1 receptor and Smad7, Sci. Rep, 6, (2016)
  62. Dong X., Cao R., Li Q., Yin L., The long noncoding RNA-H19 mediates the progression of fibrosis from acute kidney injury to chronic kidney disease by regulating the miR-196a/Wnt/β-catenin signaling, Nephron, 146, pp. 209-219, (2022)
  63. Liu L., Zhang C., Wang J., Liu X., Qu H., Zhang G., Et al., A high level of lncFGD5-AS1 inhibits epithelial-to-mesenchymal transition by regulating the miR-196a-5p/SMAD6/BMP axis in gastric cancer, BMC Cancer, 21, (2021)