Chronic environmental hypoxia attenuates innate immunity activation and renal injury in two CKD models

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Citação
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, v.325, n.3, p.F283-F298, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Tissue hypoxia has been pointed out as a major pathogenic factor in chronic kidney disease (CKD). However, epidemiological and experimental evidence inconsistent with this notion has been described. We have previously reported that chronic exposure to low ambient Po-2 promoted no renal injury in normal rats and in rats with 5/6 renal ablation (Nx) unexpectedly attenuated renal injury. In the present study, we investigated whether chronic exposure to low ambient Po-2 would also be renoprotective in two additional models of CKD: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. In both models, normobaric ambient hypoxia attenuated the development of renal injury and inflammation. In addition, renal hypoxia limited the activation of NF-?B and NOD-like receptor family pyrin domain containing 3 inflammasome cascades as well as oxidative stress and intrarenal infiltration by angiotensin II-positive cells. Renal activation of hypoxia-inducible factor (HIF)-2a, along with other adaptive mechanisms to hypoxia, may have contributed to these renoprotective effects. The present findings may contribute to unravel the pathogenesis of CKD and to the development of innovative strategies to arrest its progression.
Palavras-chave
chronic kidney disease, hypoxia, hypoxia-inducible factor, NF-& kappa, B pathway, NOD-like receptor family pyrin domain containing 3 inflammasome
Referências
  1. Arias SCA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056215
  2. Baibas N, 2005, J EPIDEMIOL COMMUN H, V59, P274, DOI 10.1136/jech.2004.025510
  3. Bártsch P, 2007, CIRCULATION, V116, P2191, DOI 10.1161/CIRCULATIONAHA.106.650796
  4. BAYLIS C, 1992, J CLIN INVEST, V90, P278, DOI 10.1172/JCI115849
  5. Correa-Costa M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029004
  6. Faeh D, 2009, CIRCULATION, V120, P495, DOI 10.1161/CIRCULATIONAHA.108.819250
  7. Fanelli C, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02915-6
  8. Faustino VD, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20180762
  9. Fine LG, 2008, KIDNEY INT, V74, P867, DOI 10.1038/ki.2008.350
  10. Foresto-Neto O, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00084
  11. Foresto-Neto O, 2018, LAB INVEST, V98, P773, DOI 10.1038/s41374-018-0029-4
  12. Zambom FFF, 2019, AM J PHYSIOL-RENAL, V317, pF1058, DOI 10.1152/ajprenal.00251.2019
  13. Fujihara CK, 2007, AM J PHYSIOL-RENAL, V292, pF92, DOI 10.1152/ajprenal.00184.2006
  14. Hurtado A, 2012, NEPHROL DIAL TRANSPL, V27, piv11, DOI 10.1093/ndt/gfs427
  15. JEPSEN FL, 1979, VIRCHOWS ARCH A, V383, P265, DOI 10.1007/BF00430245
  16. Kerber EL, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21228551
  17. Kim YG, 2000, KIDNEY INT, V58, P2390, DOI 10.1046/j.1523-1755.2000.00422.x
  18. Klinkhammer BM, 2020, J AM SOC NEPHROL, V31, P799, DOI 10.1681/ASN.2019080827
  19. Kong KH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11829-2
  20. Li QY, 2022, KIDNEY DIS-BASEL, V8, P44, DOI 10.1159/000520141
  21. Mancini G, 1965, Immunochemistry, V2, P235, DOI 10.1016/0019-2791(65)90004-2
  22. Matsui K, 2003, J AM SOC NEPHROL, V14, P1981, DOI 10.1097/01.ASN.0000076078.50889.43
  23. Mimura I, 2010, NAT REV NEPHROL, V6, P667, DOI 10.1038/nrneph.2010.124
  24. Morgan MJ, 2011, CELL RES, V21, P103, DOI 10.1038/cr.2010.178
  25. Mulay SR, 2014, NEPHROL DIAL TRANSPL, V29, P507, DOI 10.1093/ndt/gft248
  26. Muller DN, 2000, HYPERTENSION, V35, P193, DOI 10.1161/01.HYP.35.1.193
  27. Nizet V, 2009, NAT REV IMMUNOL, V9, P609, DOI 10.1038/nri2607
  28. Norman JT, 2006, CLIN EXP PHARMACOL P, V33, P989, DOI 10.1111/j.1440-1681.2006.04476.x
  29. Okabe C, 2013, AM J PHYSIOL-RENAL, V305, pF155, DOI 10.1152/ajprenal.00491.2012
  30. Packer M, 2020, JACC-BASIC TRANSL SC, V5, P961, DOI 10.1016/j.jacbts.2020.05.006
  31. RIBEIRO MO, 1992, HYPERTENSION, V20, P298, DOI 10.1161/01.HYP.20.3.298
  32. Rincón J, 2015, LIFE SCI, V124, P81, DOI 10.1016/j.lfs.2015.01.005
  33. Savla JJ, 2018, HIGH ALT MED BIOL, V19, P124, DOI 10.1089/ham.2018.0044
  34. Schiffer TA, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00211
  35. Schley G, 2019, KIDNEY INT, V96, P378, DOI 10.1016/j.kint.2019.02.016
  36. Shapiro BB, 2014, HEMODIAL INT, V18, P374, DOI 10.1111/hdi.12129
  37. Shoji K, 2014, CURR OPIN NEPHROL HY, V23, P161, DOI 10.1097/01.mnh.0000441049.98664.6c
  38. Shu SQ, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8030207
  39. Sollinger D, 2014, CARDIOVASC RES, V101, P464, DOI 10.1093/cvr/cvt265
  40. Strehl C, 2014, J LEUKOCYTE BIOL, V95, P233, DOI 10.1189/jlb.1212627
  41. Suzuki Y, 2003, INT J BIOCHEM CELL B, V35, P881, DOI 10.1016/S1357-2725(02)00271-6
  42. Tanaka T, 2005, LAB INVEST, V85, P1292, DOI 10.1038/labinvest.3700328
  43. Rempel LCT, 2019, AM J PHYSIOL-RENAL, V317, pF1285, DOI 10.1152/ajprenal.00367.2018
  44. WALLENSTEIN S, 1980, CIRC RES, V47, P1, DOI 10.1161/01.RES.47.1.1
  45. Wang SY, 2022, FRONT PHYSIOL, V13, DOI 10.3389/fphys.2022.969456
  46. Winkelmayer WC, 2012, NEPHROL DIAL TRANSPL, V27, P2411, DOI 10.1093/ndt/gfr681
  47. YOKOZAWA T, 1992, NEPHRON, V61, P236, DOI 10.1159/000186884
  48. Zhao M, 2018, KIDNEY DIS-BASEL, V4, P83, DOI 10.1159/000488242