Blood-brain barrier lesion-a novel determinant of autonomic imbalance in heart failure and the effects of exercise training

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PORTLAND PRESS LTD
Autores
RAQUEL, Hiviny de Ataides
PEREGO, Sany M.
MASSON, Gustavo S.
COLQUHOUN, Alison
MICHELINI, Lisete C.
Citação
CLINICAL SCIENCE, v.137, n.15, p.1049-1066, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Heart failure (HF) is characterized by reduced ventricular function, compensatory activa-tion of neurohormonal mechanisms and marked autonomic imbalance. Exercise training (T) is effective to reduce neurohormonal activation but the mechanism underlying the au-tonomic dysfunction remains elusive. Knowing that blood-brain barrier (BBB) lesion con-tributes to autonomic imbalance, we sought now to investigate its involvement in HF-and exercise-induced changes of autonomic control. Wistar rats submitted to coronary artery ligation or SHAM surgery were assigned to T or sedentary (S) protocol for 8 weeks. After hemodynamic/autonomic recordings and evaluation of BBB permeability, brains were har-vesting for ultrastructural analysis of BBB constituents, measurement of vesicles trafficking and tight junction's (TJ) tightness across the BBB (transmission electron microscopy) and caveolin-1 and claudin-5 immunofluorescence within autonomic brain areas. HF-S rats ver-sus SHAM-S exhibited reduced blood pressure, augmented vasomotor sympathetic activity, increased pressure and reduced heart rate variability, and, depressed reflex sensitivity. HF-S also presented increased caveolin-1 expression, augmented vesicle trafficking and a weak TJ (reduced TJ extension/capillary border), which determined increased BBB permeability. In contrast, exercise restored BBB permeability, reduced caveolin-1 content, normalized vesicles counting/capillary, augmented claudin-5 expression, increased TJ tightness and selectivity simultaneously with the normalization of both blood pressure and autonomic bal-ance. Data indicate that BBB dysfunction within autonomic nuclei (increased transcytosis and weak TJ allowing entrance of plasma constituents into the brain parenchyma) underlies the autonomic imbalance in HF. Data also disclose that exercise training corrects both tran-scytosis and paracellular transport and improves autonomic control even in the persistence of cardiac dysfunction.
Palavras-chave
Referências
  1. Andreone BJ, 2017, NEURON, V94, P581, DOI 10.1016/j.neuron.2017.03.043
  2. Attwell D, 2016, J CEREBR BLOOD F MET, V36, P451, DOI 10.1177/0271678X15610340
  3. Ayloo S, 2019, CURR OPIN NEUROBIOL, V57, P32, DOI 10.1016/j.conb.2018.12.014
  4. Ben-Zvi A, 2014, NATURE, V509, P507, DOI 10.1038/nature13324
  5. Besnier F, 2017, ANN PHYS REHABIL MED, V60, P27, DOI 10.1016/j.rehab.2016.07.002
  6. Biancardi VC, 2016, J PHYSIOL-LONDON, V594, P1591, DOI 10.1113/JP271584
  7. Biancardi VC, 2014, HYPERTENSION, V63, P572, DOI 10.1161/HYPERTENSIONAHA.113.01743
  8. Braunwald E, 2013, JACC-HEART FAIL, V1, P1, DOI 10.1016/j.jchf.2012.10.002
  9. Buttler L, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.01048
  10. Candido VB, 2023, FRONT PHYSIOL, V14, DOI 10.3389/fphys.2023.1069485
  11. Carillo BA, 2012, AUTON NEUROSCI-BASIC, V171, P41, DOI 10.1016/j.autneu.2012.10.005
  12. Chaar LJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137395
  13. Dayer M, 2020, FUTUR CARDIOL, V17, P363, DOI 10.2217/fca-2020-0059
  14. Erdo F, 2017, J CEREBR BLOOD F MET, V37, P4, DOI 10.1177/0271678X16679420
  15. Florea VG, 2014, CIRC RES, V114, P1815, DOI 10.1161/CIRCRESAHA.114.302589
  16. Fragas MG, 2021, AM J PHYSIOL-REG I, V321, pR732, DOI 10.1152/ajpregu.00154.2020
  17. Gao L, 2008, HYPERTENSION, V52, P708, DOI 10.1161/HYPERTENSIONAHA.108.116228
  18. Greene C, 2019, FLUIDS BARRIERS CNS, V16, DOI 10.1186/s12987-019-0123-z
  19. Groehs RV, 2015, AM J PHYSIOL-HEART C, V308, pH1096, DOI 10.1152/ajpheart.00723.2014
  20. Haley MJ, 2017, J CEREBR BLOOD F MET, V37, P456, DOI 10.1177/0271678X16629976
  21. Ichige MHA, 2016, J PHYSIOL-LONDON, V594, P6241, DOI 10.1113/JP272730
  22. Knowland D, 2014, NEURON, V82, P603, DOI 10.1016/j.neuron.2014.03.003
  23. Lochhead JJ, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00914
  24. Masson GS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094927
  25. Nguyen LN, 2014, NATURE, V509, P503, DOI 10.1038/nature13241
  26. Ocak PE, 2020, EXP NEUROL, V326, DOI 10.1016/j.expneurol.2020.113203
  27. Ovsenik A, 2021, BRAIN BEHAV, V11, DOI 10.1002/brb3.2176
  28. Patel KP, 2012, AM J PHYSIOL-HEART C, V302, pH527, DOI 10.1152/ajpheart.00676.2011
  29. Paxinos G, 1998, RAT BRAIN IN STEREOTAXIC COORDINATES, FOURTH ED., pix
  30. Perego Sany M, 2023, Am J Physiol Regul Integr Comp Physiol, V325, pR299, DOI 10.1152/ajpregu.00049.2023
  31. Predescu SA, 1997, AM J PHYSIOL-HEART C, V272, pH937, DOI 10.1152/ajpheart.1997.272.2.H937
  32. Rocha-Santos C, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00309
  33. Sandoval KE, 2008, NEUROBIOL DIS, V32, P200, DOI 10.1016/j.nbd.2008.08.005
  34. Shaikh SR, 2015, BBA-BIOMEMBRANES, V1848, P211, DOI 10.1016/j.bbamem.2014.04.020
  35. Sweeney MD, 2018, NAT REV NEUROL, V14, P133, DOI 10.1038/nrneurol.2017.188
  36. van Bilsen M, 2017, EUR J HEART FAIL, V19, P1361, DOI 10.1002/ejhf.921
  37. Vigh JP, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12060685
  38. Zhao YL, 2014, REV NEUROSCIENCE, V25, P247, DOI 10.1515/revneuro-2013-0039
  39. Zheng H, 2005, AM J PHYSIOL-HEART C, V288, pH2332, DOI 10.1152/ajpheart.00473.2004
  40. Zucker IH, 2001, ANN NY ACAD SCI, V940, P431
  41. Zucker IH, 2015, AM J PHYSIOL-HEART C, V308, pH781, DOI 10.1152/ajpheart.00026.2015
  42. Zucker IH, 2014, CLIN SCI, V126, P695, DOI 10.1042/CS20130294