The Effect of Gene Editing by CRISPR-Cas9 of miR-21 and the Indirect Target MMP9 in Metastatic Prostate Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.24, n.19, article ID 14847, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Prostate cancer (PCa) has a high prevalence and represents an important health problem, with an increased risk of metastasis. With the advance of CRISPR-Cas9 genome editing, new possibilities have been created for investigating PCa. The technique is effective in knockout oncogenes, reducing tumor resistance. MMP9 and miR-21 target genes are associated with PCa progression; therefore, we evaluated the MMP-9 and miR-21 targets in PCa using the CRISPR-Cas9 system. Single guide RNAs (sgRNAs) of MMP9 and miR-21 sequences were inserted into a PX-330 plasmid, and transfected in DU145 and PC-3 PCa cell lines. MMP9 and RECK expression was assessed by qPCR, WB, and IF. The miR-21 targets, integrins, BAX and mTOR, were evaluated by qPCR. Flow cytometry was performed with Annexin5, 7-AAD and Ki67 markers. Invasion assays were performed with Matrigel. The miR-21 CRISPR-Cas9-edited cells upregulated RECK, MARCKS, BTG2, and PDCD4. CDH1, ITGB3 and ITGB1 were increased in MMP9 and miR-21 CRISPR-Cas9-edited cells. Increased BAX and decreased mTOR were observed in MMP9 and miR-21 CRISPR-Cas9-edited cells. Reduced cell proliferation, increased apoptosis and low invasion in MMP9 and miR-21 edited cells was observed, compared to Scramble. CRISPR-Cas9-edited cells of miR-21 and MMP9 attenuate cell proliferation, invasion and stimulate apoptosis, impeding PCa evolution.
Palavras-chave
CRISPR-Cas9, miR-21, matrix metalloproteinases, metastatic prostate cancer
Referências
  1. Arisan ED, 2020, BIOLOGY-BASEL, V9, DOI 10.3390/biology9030052
  2. Babichenko II, 2014, INT J CLIN EXP PATHO, V7, P9090
  3. Barillari G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21124526
  4. Bodey B, 2001, IN VIVO, V15, P65
  5. Bonci D, 2016, ONCOGENE, V35, P1180, DOI 10.1038/onc.2015.176
  6. Coppola V, 2013, ONCOGENE, V32, P1843, DOI 10.1038/onc.2012.194
  7. Ding LF, 2021, CELL DEATH DIS, V12, DOI 10.1038/s41419-021-03854-x
  8. Fei T, 2017, P NATL ACAD SCI USA, V114, pE5207, DOI 10.1073/pnas.1617467114
  9. Folini M, 2010, MOL CANCER, V9, DOI 10.1186/1476-4598-9-12
  10. Gong YX, 2014, CANCERS, V6, P1298, DOI 10.3390/cancers6031298
  11. Jemal A, 2009, CA-CANCER J CLIN, V59, P225, DOI [10.3322/caac.21601, 10.3322/caac.20006, 10.3322/caac.21654, 10.3322/caac.21254, 10.3322/caac.21551, 10.3322/caac.21387, 10.3322/caac.20073, 10.3322/caac.21332]
  12. Kim K, 2020, BIOCHEM BIOPH RES CO, V529, P707, DOI 10.1016/j.bbrc.2020.05.215
  13. Kurozumi A, 2016, CANCER SCI, V107, P84, DOI 10.1111/cas.12842
  14. Lavaud P, 2020, THER ADV MED ONCOL, V12, DOI 10.1177/1758835920978134
  15. Leite KRM, 2015, J CANCER, V6, P292, DOI 10.7150/jca.11038
  16. Lentsch E, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20225706
  17. Li T, 2009, BIOCHEM BIOPH RES CO, V383, P280, DOI 10.1016/j.bbrc.2009.03.077
  18. Liu T, 2016, CANCER LETT, V373, P109, DOI 10.1016/j.canlet.2016.01.030
  19. McDonald AC, 2019, PROSTATE, V79, P961, DOI 10.1002/pros.23803
  20. Olson A, 2019, PLOS GENET, V15, DOI 10.1371/journal.pgen.1008451
  21. Page-McCaw A, 2007, NAT REV MOL CELL BIO, V8, P221, DOI 10.1038/nrm2125
  22. Ran FA, 2013, NAT PROTOC, V8, P2281, DOI 10.1038/nprot.2013.143
  23. Ran FA, 2013, CELL, V154, P1380, DOI 10.1016/j.cell.2013.08.021
  24. Ratti M, 2020, TARGET ONCOL, V15, P261, DOI 10.1007/s11523-020-00717-x
  25. Reis ST, 2011, INT J BIOL MARKER, V26, P255, DOI 10.5301/JBM.2011.8831
  26. Wei CG, 2018, MOL MED REP, V17, P2901, DOI 10.3892/mmr.2017.8257
  27. Ye RS, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0561-x
  28. Yuan J, 2020, INT J CLIN EXP PATHO, V13, P501
  29. Zhao WC, 2021, ANDROLOGIA, V53, DOI 10.1111/and.14016