Association of <i>UCP3</i> Polymorphisms with Nonalcoholic Steatohepatitis and Metabolic Syndrome in Nonalcoholic Fatty Liver Disease Brazilian Patients

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Citação
METABOLIC SYNDROME AND RELATED DISORDERS, v.20, n.2, p.114-123, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: We investigated the possible association of uncoupling protein 3 gene (UCP3) single nucleotide polymorphisms (SNPs) with nonalcoholic steatohepatitis (NASH) and metabolic syndrome (MetS) in nonalcoholic fatty liver disease (NAFLD) Brazilian patients.Methods: UCP3 SNPs rs1726745, rs3781907, and rs11235972 were genotyped in 158 biopsy-proven NAFLD Brazilian patients. Statistics was performed with JMP, R, and SHEsis softwares.Results: The TT genotype of rs1726745 was associated with less occurrence of MetS (P = 0.006) and with lower body mass index (BMI) in the entire NAFLD sample (P = 0.01) and in the NASH group (P = 0.02). The rs1726745-T was associated with lower values of AST (P = 0.001), ALT (P = 0.0002), triglycerides (P = 0.01), and total cholesterol (P = 0.02) in the entire NAFLD sample. Between groups, there were lower values of aminotransferases strictly in individuals with NASH (AST, P = 0.002; ALT, P = 0.0007) and with MetS (AST, P = 0.002; ALT, P = 0.001). The rs3781907-G was associated with lower GGT elevation values in the entire NAFLD sample (P = 0.002), in the NASH group (P = 0.004), and with MetS group (P = 0.003) and with protection for advanced fibrosis (P = 0.01). The rs11235972-A was associated with lower GGT values in the entire NAFLD sample (P = 0.006) and in the NASH group (P = 0.01) and with MetS group (P = 0.005), with fibrosis absence (P = 0.01) and protection for advanced fibrosis (P = 0.01). The TAA haplotype was protective for NASH (P = 0.002), and TGG haplotype was protective for MetS (P = 0.01).Conclusion: UCP3 gene variants were associated with protection against NASH and MetS, in addition to lower values of liver enzymes, lipid profile, BMI and, lesser fibrosis severity in the studied population.
Palavras-chave
UCP3, single nucleotide polymorphism, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, metabolic syndrome
Referências
  1. Aller R, 2010, NUTR HOSP, V25, P572, DOI 10.3305/nh.2010.25.4.4484
  2. [Anonymous], 2015, Nat Rev Dis Primers, V1, P15081, DOI 10.1038/nrdp.2015.81
  3. de Luis DA, 2012, J CLIN LAB ANAL, V26, P272, DOI 10.1002/jcla.21517
  4. Bézaire V, 2007, FASEB J, V21, P312, DOI 10.1096/fj.06-6966rev
  5. Brondani LA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096411
  6. Busiello RA, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00036
  7. Buzzetti E, 2016, METABOLISM, V65, P1038, DOI 10.1016/j.metabol.2015.12.012
  8. Chalasani N, 2012, AM J GASTROENTEROL, V107, P811, DOI 10.1038/ajg.2012.128
  9. Chan WK, 2014, J DIGEST DIS, V15, P545, DOI 10.1111/1751-2980.12175
  10. Cioffi F, 2009, BIOFACTORS, V35, P417, DOI 10.1002/biof.54
  11. Cleeman JI, 2001, JAMA-J AM MED ASSOC, V285, P2486, DOI 10.1001/jama.285.19.2486
  12. Cortez-Pinto H, 2009, J HEPATOL, V50, P857, DOI 10.1016/j.jhep.2009.02.019
  13. Costford SR, 2007, APPL PHYSIOL NUTR ME, V32, P884, DOI 10.1139/H07-063
  14. Dato S, 2012, MECH AGEING DEV, V133, P530, DOI 10.1016/j.mad.2012.06.004
  15. Di Rosa M, 2012, J MOL MED, V90, P105, DOI 10.1007/s00109-011-0803-x
  16. Dixon JB, 2006, OBES SURG, V16, P1278, DOI 10.1381/096089206778663805
  17. Eslam M, 2020, J HEPATOL, V73, P202, DOI 10.1016/j.jhep.2020.03.039
  18. Fujii H, 2020, BMC GASTROENTEROL, V20, DOI 10.1186/s12876-020-01369-x
  19. Genel S, 2015, J DIABETES METAB, V6, DOI 10.4172/2155-6156.1000526
  20. Groop L, 2000, BRIT J NUTR, V83, pS39
  21. Hamada T, 2008, METABOLISM, V57, P410, DOI 10.1016/j.metabol.2007.10.019
  22. Hernaez R, 2012, GASTROENT HEPAT-BARC, V35, P32, DOI 10.1016/j.gastrohep.2011.08.002
  23. Hossain IA, 2016, DIABETES METAB SYND, V10, pS25, DOI 10.1016/j.dsx.2015.09.005
  24. Irie M, 2012, J INT MED RES, V40, P924, DOI 10.1177/147323001204000311
  25. Irie Makoto, 2016, Euroasian J Hepatogastroenterol, V6, P13, DOI 10.5005/jp-journals-10018-1159
  26. Jia JJ, 2009, OBES REV, V10, P519, DOI 10.1111/j.1467-789X.2009.00569.x
  27. Ken-Dror G, 2013, HUM HERED, V75, P44, DOI 10.1159/000350964
  28. Kleiner DE, 2005, HEPATOLOGY, V41, P1313, DOI 10.1002/hep.20701
  29. Lee GH, 2020, WORLD J HEPATOL, V12, P1228, DOI 10.4254/wjh.v12.i12.1228
  30. Li B, 2018, CAN J GASTROENTEROL, V2018, DOI 10.1155/2018/2784537
  31. Lin S, 2020, LIVER INT, V40, P2082, DOI 10.1111/liv.14548
  32. Liu YJ, 2005, PHYSIOL GENOMICS, V22, P197, DOI 10.1152/physiolgenomics.00031.2005
  33. Lonardo A, 2017, WORLD J GASTROENTERO, V23, P6571, DOI 10.3748/wjg.v23.i36.6571
  34. Lonardo A, 2015, DIGEST LIVER DIS, V47, P181, DOI 10.1016/j.dld.2014.09.020
  35. Macaluso FS, 2015, WORLD J GASTROENTERO, V21, P11088, DOI 10.3748/wjg.v21.i39.11088
  36. Meirhaeghe A, 2000, DIABETOLOGIA, V43, P1424, DOI 10.1007/s001250051549
  37. Meirhaeghe A, 2005, MOL GENET METAB, V86, P293, DOI 10.1016/j.ymgme.2005.05.006
  38. Mofrad P, 2003, HEPATOLOGY, V37, P1286, DOI 10.1053/jhep.2003.50229
  39. Obika M, 2012, EXP DIABETES RES, DOI 10.1155/2012/145754
  40. Oliveira CP, 2015, CLIN RES HEPATOL GAS, V39, pS35, DOI 10.1016/j.clinre.2015.05.014
  41. Pardini B, 2018, BMC CANCER, V18, DOI 10.1186/s12885-018-4590-4
  42. Perumpail BJ, 2017, WORLD J GASTROENTERO, V23, P8263, DOI 10.3748/wjg.v23.i47.8263
  43. Petta S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051165
  44. Pohl EE, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00470
  45. Salopuro T, 2009, BMC MED GENET, V10, DOI 10.1186/1471-2350-10-94
  46. Sanyal Debmalya, 2015, Indian J Endocrinol Metab, V19, P597, DOI 10.4103/2230-8210.163172
  47. Sao R, 2018, ARCH MED SCI, V14, P1233, DOI 10.5114/aoms.2017.68821
  48. Schrauwen P, 2004, P NUTR SOC, V63, P287, DOI 10.1079/PNS2003336
  49. Shaikh TZ MH., 2015, PROFESSIONAL MED J, V22, P414
  50. Sharma M, 2015, J CLIN EXP HEPATOL, V5, P147, DOI 10.1016/j.jceh.2015.02.002
  51. Sookoian S, 2017, CLIN MOL HEPATOL, V23, P1, DOI 10.3350/cmh.2016.0109
  52. Sookoian S, 2016, HEPATOLOGY, V64, P1417, DOI 10.1002/hep.28746
  53. Su MF, 2018, BMC MED GENET, V19, DOI 10.1186/s12881-018-0554-4
  54. Tahan V, 2008, HEPATO-GASTROENTEROL, V55, P1433
  55. Tao LX, 2013, INT J ENV RES PUB HE, V10, P5523, DOI 10.3390/ijerph10115523
  56. Targher G., 2020, HEPATOMA RES, V6, P64, DOI 10.20517/2394-5079.2020.71
  57. Tilg H, 2021, HEPATOLOGY, V73, P833, DOI 10.1002/hep.31518
  58. van Abeelen AFM, 2008, EUR J ENDOCRINOL, V158, P669, DOI 10.1530/EJE-07-0834
  59. Vespasiani-Gentilucci U, 2018, WORLD J GASTROENTERO, V24, P4835, DOI 10.3748/wjg.v24.i43.4835
  60. Wang C, 2017, BIOMED REP, V7, P95, DOI 10.3892/br.2017.926
  61. Xu YP, 2013, WORLD J GASTROENTERO, V19, P5897, DOI 10.3748/wjg.v19.i35.5897
  62. Younossi ZM, 2015, HEPATOLOGY, V62, p739A
  63. Banderas DZ, 2012, EUR J GASTROEN HEPAT, V24, P805, DOI 10.1097/MEG.0b013e328354044a
  64. Zhang K, 2002, AM J HUM GENET, V71, P1386, DOI 10.1086/344780
  65. Zhang YY, 2015, BMJ OPEN, V5, DOI 10.1136/bmjopen-2015-008204
  66. Zhao RZ, 2019, INT J MOL MED, V44, P3, DOI 10.3892/ijmm.2019.4188