Multi-centre analysis of networks and genes modulated by hypothalamic stimulation in patients with aggressive behaviours

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
eLIFE SCIENCES PUBL LTD
Autores
GOUVEIA, Flavia Venetucci
GERMANN, Jurgen
ELIAS, Gavin J. B.
BOUTET, Alexandre
LOH, Aaron
RIOS, Adriana Lucia Lopez
DIAZ, Cristina Torres
LOPEZ, William Omar Contreras
Citação
ELIFE, v.12, article ID e84566, 27p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas - together with patient age - were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.
Palavras-chave
deep brain stimulation, hypothalamus, aggressive behaviour, imaging connectomics, imaging transcriptomics, magnetic resonance imaging, Human
Referências
  1. Adler BA, 2015, AUTISM, V19, P102, DOI 10.1177/1362361314524641
  2. Amorim BO, 2015, J NEUROINFLAMM, V12, DOI 10.1186/s12974-015-0384-7
  3. Amorim L, 2018, CUREUS J MED SCIENCE, V10, DOI 10.7759/cureus.2661
  4. Arnatkeviciute A, 2023, BIOL PSYCHIAT, V93, P391, DOI 10.1016/j.biopsych.2022.10.016
  5. Arnatkeviciute A, 2022, BIOL PSYCHIAT-GLOB O, V2, P319, DOI 10.1016/j.bpsgos.2021.10.002
  6. Arnatkeviciute A, 2019, NEUROIMAGE, V189, P353, DOI 10.1016/j.neuroimage.2019.01.011
  7. Avants BB, 2011, NEUROIMAGE, V54, P2033, DOI 10.1016/j.neuroimage.2010.09.025
  8. Bambico FR, 2015, TRANSL PSYCHIAT, V5, DOI 10.1038/tp.2015.166
  9. Beattie J, 1930, P R SOC LOND B-CONTA, V106, P253, DOI 10.1098/rspb.1930.0027
  10. Benedetti-Isaac JC, 2015, EPILEPSIA, V56, P1152, DOI 10.1111/epi.13025
  11. Blair RJR, 2016, J CHILD ADOL PSYCHOP, V26, P4, DOI 10.1089/cap.2015.0088
  12. Yan H, 2021, J NEUROSURG, V137, P699, DOI 10.3171/2021.11.JNS21928
  13. Yan H, 2019, J NEUROSURG-PEDIATR, V23, P274, DOI 10.3171/2018.9.PEDS18417
  14. Brentani Helena, 2013, Braz. J. Psychiatry, V35, pS62
  15. Carson MJ, 2006, CLIN NEUROSCI RES, V6, P237, DOI 10.1016/j.cnr.2006.09.004
  16. Chan HH, 2018, BRAIN STIMUL, V11, P1356, DOI 10.1016/j.brs.2018.07.051
  17. Chen YC, 2020, BRAIN BEHAV IMMUN, V90, P16, DOI 10.1016/j.bbi.2020.07.035
  18. Coblentz A, 2021, J NEUROSURG-PEDIATR, V27, P346, DOI 10.3171/2020.7.PEDS20322
  19. Lopez WOC, 2021, WORLD NEUROSURG, V155, pE19, DOI 10.1016/j.wneu.2021.07.086
  20. Coulombe MA, 2019, J NEUROSURG-PEDIATR, V23, P236, DOI 10.3171/2018.7.PEDS18300
  21. Davidson B, 2022, MOL PSYCHIATR, V27, P3992, DOI 10.1038/s41380-022-01677-6
  22. De Vloo P, 2021, J NEUROL NEUROSUR PS, V92, P1135, DOI 10.1136/jnnp-2020-325711
  23. Dembek TA, 2019, ANN NEUROL, V86, P527, DOI 10.1002/ana.25567
  24. Dembek TA, 2017, NEUROIMAGE-CLIN, V13, P164, DOI 10.1016/j.nicl.2016.11.019
  25. Dudas B, 2013, HUMAN HYPOTHALAMUS A
  26. Duffley G, 2019, J NEURAL ENG, V16, DOI 10.1088/1741-2552/ab3c95
  27. Eisenstein SA, 2014, ANN NEUROL, V76, P279, DOI 10.1002/ana.24204
  28. Elias GJB, 2022, BRAIN, V145, P362, DOI 10.1093/brain/awab284
  29. Elias GJB, 2021, ANN NEUROL, V89, P426, DOI 10.1002/ana.25975
  30. Elias GJB, 2020, BRAIN STIMUL, V13, P10, DOI 10.1016/j.brs.2019.09.010
  31. Elias GJB, 2022, CONNECTOMIC DEEP BRA, P245
  32. Elkaim LM, 2018, EXPERT REV NEUROTHER, V18, P773, DOI 10.1080/14737175.2018.1523721
  33. Encinas JM, 2011, J COMP NEUROL, V519, P6, DOI 10.1002/cne.22503
  34. Ewert S, 2018, NEUROIMAGE, V170, P271, DOI 10.1016/j.neuroimage.2017.05.015
  35. Flament-Durand J, 1980, ACTA PSYCHIAT BELGIC, V80, P364
  36. Florence G, 2016, NEUROSCIENTIST, V22, P332, DOI 10.1177/1073858415591964
  37. Fornito A, 2019, TRENDS COGN SCI, V23, P34, DOI 10.1016/j.tics.2018.10.005
  38. Fox MD, 2018, NEW ENGL J MED, V379, P2237, DOI 10.1056/NEJMra1706158
  39. Fox MD, 2014, P NATL ACAD SCI USA, V111, pE4367, DOI 10.1073/pnas.1405003111
  40. Franzini A, 2010, NEUROSURG FOCUS, V29, DOI 10.3171/2010.5.FOCUS1094
  41. Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P1
  42. Gallagher A, 2019, NEUROCOGNITIVE DEV N
  43. Germann J, 2021, ALZHEIMERS DEMENT, V17, P777, DOI 10.1002/alz.12238
  44. Germann J, 2021, BRAIN, V144, P3529, DOI 10.1093/brain/awab232
  45. Gouveia FV, 2021, NEUROSURGERY, V89, pS97, DOI 10.1093/neuros/nyaa378_S097
  46. Gouveia FV, 2021, BRAIN STIMUL, V14, P1201, DOI 10.1016/j.brs.2021.07.062
  47. Gouveia FV, 2021, FRONT HUM NEUROSCI, V15, DOI 10.3389/fnhum.2021.653631
  48. Gouveia FV, 2020, BJPSYCH OPEN, V6, DOI 10.1192/bjo.2020.91
  49. Gouveia FV, 2019, NEUROSURGERY, V85, P11, DOI 10.1093/neuros/nyy635
  50. Gouveia FV, 2023, BIORXIV, DOI [10.1101/2023.03.20.533520, DOI 10.1101/2023.03.20.533520]
  51. Gray AM, 2014, J PAIN, V15, P283, DOI 10.1016/j.jpain.2013.11.003
  52. Hagopian LP, 2015, J APPL BEHAV ANAL, V48, P523, DOI 10.1002/jaba.236
  53. Hamani C, 2022, SCI ADV, V8, DOI 10.1126/sciadv.adc9970
  54. Hamani C, 2014, NEUROSURGERY, V75, P327, DOI 10.1227/NEU.0000000000000499
  55. Hamani C, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003722
  56. Hawrylycz MJ, 2012, NATURE, V489, P391, DOI 10.1038/nature11405
  57. Hess WR, 1945, HOHEREN ZENTREN VEGE, DOI [10.5169/SEALS-306728, DOI 10.5169/SEALS-306728]
  58. HOFF H, 1950, ACTA NEUROVEG, V1, P123, DOI 10.1007/BF01226522
  59. Horn A, 2015, NEUROIMAGE, V107, P127, DOI 10.1016/j.neuroimage.2014.12.002
  60. Jakobs M, 2019, EMBO MOL MED, V11, DOI 10.15252/emmm.201809575
  61. Johansson A, 2012, GENES BRAIN BEHAV, V11, P214, DOI 10.1111/j.1601-183X.2011.00744.x
  62. Karas PJ, 2013, NEUROSURG FOCUS, V35, DOI 10.3171/2013.9.FOCUS13383
  63. Knotkova H, 2021, LANCET, V397, P2111, DOI 10.1016/S0140-6736(21)00794-7
  64. Koenig J, 2017, J PSYCHIATR NEUROSCI, V42, P189, DOI 10.1503/jpn.160074
  65. Kuleshov MV, 2016, NUCLEIC ACIDS RES, V44, pW90, DOI 10.1093/nar/gkw377
  66. Lacadie CM, 2008, NEUROIMAGE, V42, P717, DOI 10.1016/j.neuroimage.2008.04.240
  67. Lechan RM, 2016, ENDOTEXT FEINGOLD KR
  68. Leplus A, 2019, BRAIN STRUCT FUNCT, V224, P363, DOI 10.1007/s00429-018-1779-x
  69. Li NF, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16734-3
  70. Lipsman N, 2010, NEUROSURG FOCUS, V29, DOI 10.3171/2010.5.FOCUS1095
  71. Ríos ALL, 2023, STEREOT FUNCT NEUROS, V100, P275, DOI 10.1159/000526871
  72. Lozano AM, 2008, BIOL PSYCHIAT, V64, P461, DOI 10.1016/j.biopsych.2008.05.034
  73. Lozano AM, 2019, NAT REV NEUROL, V15, P148, DOI 10.1038/s41582-018-0128-2
  74. Lozano AM, 2016, J ALZHEIMERS DIS, V54, P777, DOI 10.3233/JAD-160017
  75. Malik AI, 2012, GENES BRAIN BEHAV, V11, P545, DOI 10.1111/j.1601-183X.2012.00776.x
  76. Mansouri AM, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67626-x
  77. Markello RD, 2021, ELIFE, V10, DOI [10.7554/eLife.72129, 10.7554/eLife.72129.sa0, 10.7554/eLife.72129.sa1, 10.7554/eLife.72129.sa2]
  78. Micieli R, 2017, J NEUROSURG, V126, P1158, DOI 10.3171/2016.4.JNS141704
  79. Miczek KA, 2002, PSYCHOPHARMACOLOGY, V163, P434, DOI 10.1007/s00213-002-1139-6
  80. Miczek KA, 2007, J NEUROSCI, V27, P11803, DOI 10.1523/JNEUROSCI.3500-07.2007
  81. Mouse Imaging Centre, 2022, HOSP SICK CHILDR
  82. Mroczek M, 2021, J NEUROIMAGING, V31, P244, DOI 10.1111/jon.12827
  83. Najjar S, 2013, J NEUROINFLAMM, V10, DOI 10.1186/1742-2094-10-43
  84. Ne'eman R, 2016, HORM BEHAV, V80, P125, DOI 10.1016/j.yhbeh.2016.01.015
  85. Neumann ID, 2008, J NEUROENDOCRINOL, V20, P858, DOI 10.1111/j.1365-2826.2008.01726.x
  86. NIEUWENHUYS R, 1982, J COMP NEUROL, V206, P49, DOI 10.1002/cne.902060106
  87. Romero-Garcia R, 2020, BIOL PSYCHIAT, V88, P248, DOI 10.1016/j.biopsych.2019.12.005
  88. Romero-Garcia R, 2019, MOL PSYCHIATR, V24, P1053, DOI 10.1038/s41380-018-0023-7
  89. Salanova V, 2021, EPILEPSIA, V62, P1306, DOI 10.1111/epi.16895
  90. SANO K, 1966, CONFIN NEUROL, V27, P164
  91. Sano K, 1988, Acta Neurochir Suppl (Wien), V44, P145
  92. Saper CB, 2014, CURR BIOL, V24, pR1111, DOI 10.1016/j.cub.2014.10.023
  93. Seidlitz J, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19362-z
  94. Shen EH, 2012, TRENDS NEUROSCI, V35, P711, DOI 10.1016/j.tins.2012.09.005
  95. Sunkin SM, 2013, NUCLEIC ACIDS RES, V41, pD996, DOI 10.1093/nar/gks1042
  96. Torres CV, 2021, J NEUROSURG, V134, P366, DOI 10.3171/2019.11.JNS192608
  97. Torres CV, 2013, J NEUROSURG, V119, P277, DOI 10.3171/2013.4.JNS121639
  98. Van Huijzen C., 2007, HUMAN CENTRAL NERVOU
  99. Vedam-Mai V, 2016, NEUROMODULATION, V19, P451, DOI 10.1111/ner.12406
  100. Wang Q, 2021, NEUROIMAGE, V224, DOI 10.1016/j.neuroimage.2020.117307
  101. Xie YY, 2020, CELL REP, V32, DOI 10.1016/j.celrep.2020.108137