Establishment and Comprehensive Molecular Characterization of an Immortalized Glioblastoma Cell Line from a Brazilian Patient

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
SILVA, Fernanda F. da
LUPINACCI, Fernanda C. S.
ELIAS, Bruno D. S.
BESERRA, Adriano O.
SANEMATSU, Paulo
ROFFE, Martin
COSTA, Felipe D'almeida
SANTOS, Tiago G.
HAJJ, Glaucia N. M.
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.24, n.21, article ID 15861, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with few effective treatment strategies. The research on the development of new treatments is often constrained by the limitations of preclinical models, which fail to accurately replicate the disease's essential characteristics. Herein, we describe the obtention, molecular, and functional characterization of the GBM33 cell line. This cell line belongs to the GBM class according to the World Health Organization 2021 Classification of Central Nervous System Tumors, identified by methylation profiling. GBM33 expresses the astrocytic marker GFAP, as well as markers of neuronal origin commonly expressed in GBM cells, such as beta III-tubulin and neurofilament. Functional assays demonstrated an increased growth rate when compared to the U87 commercial cell line and a similar sensitivity to temozolamide. GBM33 cells retained response to serum starvation, with reduced growth and diminished activation of the Akt signaling pathway. Unlike LN-18 and LN-229 commercial cell lines, GBM33 is able to produce primary cilia upon serum starvation. In summary, the successful establishment and comprehensive characterization of this GBM cell line provide researchers with invaluable tools for studying GBM biology, identifying novel therapeutic targets, and evaluating the efficacy of potential treatments.
Palavras-chave
glioblastoma, cell lines, primary cilia, Akt, mTOR, copy number variation, methylation profile
Referências
  1. Allen M, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aaf6853
  2. Alvarez-Satta M, 2018, THER ADV MED ONCOL, V10, DOI 10.1177/1758835918801169
  3. Anvarian Z, 2019, NAT REV NEPHROL, V15, P199, DOI 10.1038/s41581-019-0116-9
  4. Baronchelli S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057462
  5. Bashir T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047741
  6. Basten Sander G, 2013, Cilia, V2, P2, DOI 10.1186/2046-2530-2-2
  7. Berger TR, 2022, JAMA ONCOL, V8, P1493, DOI 10.1001/jamaoncol.2022.2844
  8. Borowicz S, 2014, JOVE-J VIS EXP, DOI 10.3791/51998
  9. Brennan CW, 2013, CELL, V155, P462, DOI 10.1016/j.cell.2013.09.034
  10. Capper D, 2018, NATURE, V555, P469, DOI 10.1038/nature26000
  11. Chen CH, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.621432
  12. Cruvinel-Carloni A, 2017, TRANSL CANCER RES, V6, P332, DOI 10.21037/tcr.2017.03.32
  13. Davis B, 2016, NEURO-ONCOLOGY, V18, P350, DOI 10.1093/neuonc/nov143
  14. Ghandi M, 2019, NATURE, V569, P503, DOI 10.1038/s41586-019-1186-3
  15. Gradilone SA, 2013, CANCER RES, V73, P2259, DOI 10.1158/0008-5472.CAN-12-2938
  16. Grube S, 2021, CANCER REP-US, V4, DOI 10.1002/cnr2.1324
  17. Han YG, 2009, NAT MED, V15, P1062, DOI 10.1038/nm.2020
  18. Hassounah NB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068521
  19. Hoang-Minh Lan B, 2018, Cilia, V7, P6, DOI 10.1186/s13630-018-0060-5
  20. Hoang-Minh LB, 2016, TRANSL ONCOL, V9, P392, DOI 10.1016/j.tranon.2016.08.006
  21. Hoang-Minh LB, 2016, ONCOTARGET, V7, P7029, DOI 10.18632/oncotarget.6854
  22. Kaur Gurvinder, 2012, Spermatogenesis, V2, P1
  23. Lee J, 2006, CANCER CELL, V9, P391, DOI 10.1016/j.ccr.2006.03.030
  24. Li AG, 2008, MOL CANCER RES, V6, P21, DOI 10.1158/1541-7786.MCR-07-0280
  25. Liu HQ, 2018, NAT REV CANCER, V18, P511, DOI 10.1038/s41568-018-0023-6
  26. Loskutov YV, 2018, ONCOGENE, V37, P1457, DOI 10.1038/s41388-017-0049-3
  27. Louis DN, 2021, NEURO-ONCOLOGY, V23, P1231, DOI 10.1093/neuonc/noab106
  28. Machado LE, 2018, J HISTOCHEM CYTOCHEM, V66, P403, DOI 10.1369/0022155417750838
  29. Mellinghoff IK, 2023, NEW ENGL J MED, V389, P589, DOI 10.1056/NEJMoa2304194
  30. Moser JJ, 2014, BMC CLIN PATHOL, V14, DOI 10.1186/1472-6890-14-40
  31. Moser JJ, 2009, BMC CANCER, V9, DOI 10.1186/1471-2407-9-448
  32. Ostrom QT, 2019, NEURO-ONCOLOGY, V21, pV1, DOI 10.1093/neuonc/noz150
  33. Sarkisian MR, 2019, FRONT CELL NEUROSCI, V13, DOI 10.3389/fncel.2019.00055
  34. Sarkisian MR, 2014, J NEURO-ONCOL, V117, P15, DOI 10.1007/s11060-013-1340-y
  35. Seeley ES, 2009, CANCER RES, V69, P422, DOI 10.1158/0008-5472.CAN-08-1290
  36. Stupp R, 2005, NEW ENGL J MED, V352, P987, DOI 10.1056/NEJMoa043330
  37. Wankowicz P, 2020, ARCH MED SCI, V16, P481, DOI 10.5114/aoms.2020.92857
  38. Xu ZY, 2018, METHODS MOL BIOL, V1741, P183, DOI 10.1007/978-1-4939-7659-1_14
  39. Yan T, 2011, BMC CANCER, V11, DOI 10.1186/1471-2407-11-524
  40. Yu W, 2020, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01547