Effect of restrictive cumulative fluid balance on 28-day survival in invasively ventilated patients with moderate to severe ARDS due to COVID-19

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
TREML, Ricardo Esper
CALDONAZO, Tulio
HILTON FILHO, Pedro A.
MORI, Andreia L.
CARVALHO, Andre S.
SERRANO, Juliana S. F.
RADERMACHER, Peter
Citação
SCIENTIFIC REPORTS, v.13, n.1, article ID 18504, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aimed to evaluate the effect of two restrictive cumulative fluid balance (CFB) trends on survival and on major clinical outcomes in invasively ventilated patients with moderate to severe respiratory distress syndrome (ARDS) due to SARS-CoV-2. Prospective data collection was conducted on patients in the intensive care unit (ICU) originating from a tertiary university hospital. The primary outcomes were the risk association between the CFB trend during D0 to D7 and 28-day survival. The secondary outcomes were ICU mortality, in-hospital mortality, the need for invasive ventilation at D28, administration of vasoactive drugs at D7, time on invasive ventilation after D7, and length of ICU and hospital stay. 171 patients were enrolled in the study and divided according to their CFB trends during seven days of follow-up using model-based clustering [median CFB negative trend (n = 89) - 279 ml (- 664 to 203) and (n = 82) median CFB positive trend 1362 ml (619-2026)]. The group with CFB negative trend showed a higher chance of surviving 28-day in the ICU (HR: 0.62, 95% CI 0.41-0.94, p = 0.038). Moreover, this group had a reduced length of stay in the ICU, 11 (8-19) days versus 16.5 (9-29) days p = 0.004 and presented lower rates (OR = 0.22; 95% CI 0.09-0.52) of invasive ventilation after 28-days in the ICU. In patients invasively ventilated with moderate to severe ARDS due to COVID-19, the collective who showed a negative trend in the CFB after seven days of invasive ventilation had a higher chance of surviving 28 days in the ICU and lower length of stay in the ICU.
Palavras-chave
Referências
  1. Acheampong A, 2015, CRIT CARE, V19, DOI 10.1186/s13054-015-0970-1
  2. Ahuja S, 2022, CRIT CARE, V26, DOI 10.1186/s13054-022-04023-y
  3. Alhazzani W., 2021, Crit. Care Med., V49
  4. Alsous F, 2000, CHEST, V117, P1749, DOI 10.1378/chest.117.6.1749
  5. Bellani G, 2016, JAMA-J AM MED ASSOC, V315, P788, DOI 10.1001/jama.2016.0291
  6. Botta M, 2021, LANCET RESP MED, V9, P139, DOI 10.1016/S2213-2600(20)30459-8
  7. Brault C, 2020, AM J RESP CRIT CARE, V202, P1301, DOI 10.1164/rccm.202005-2025LE
  8. Chen LYC, 2020, EUR RESPIR J, V56, DOI 10.1183/13993003.03006-2020
  9. Dessap AM, 2012, AM J RESP CRIT CARE, V186, P1256, DOI 10.1164/rccm.201205-0939OC
  10. Fagerland MW, 2012, STATA J, V12, P447, DOI 10.1177/1536867X1201200307
  11. Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131
  12. GLONEK GFV, 1995, J ROY STAT SOC B MET, V57, P533
  13. Hennig C, 2008, J MULTIVARIATE ANAL, V99, P1154, DOI 10.1016/j.jmva.2007.07.002
  14. Hennig C, 2007, COMPUT STAT DATA AN, V52, P258, DOI 10.1016/j.csda.2006.11.025
  15. Huang ACC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0225423
  16. HUMPHREY H, 1990, CHEST, V97, P1176, DOI 10.1378/chest.97.5.1176
  17. Jaffee W, 2018, J INTENSIVE CARE MED, V33, P502, DOI 10.1177/0885066617742832
  18. Khwaja A, 2012, NEPHRON CLIN PRACT, V120, pC179, DOI 10.1159/000339789
  19. Martin GS, 2006, CRIT CARE MED, V34, P15, DOI 10.1097/01.CCM.0000194535.82812.BA
  20. Martin GS, 2002, CRIT CARE MED, V30, P2175, DOI 10.1097/00003246-200210000-00001
  21. Messmer AS, 2020, CRIT CARE MED, V48, P1862, DOI 10.1097/CCM.0000000000004617
  22. Meyhoff TS, 2022, NEW ENGL J MED, V386, P2459, DOI 10.1056/NEJMoa2202707
  23. MITCHELL JP, 1992, AM REV RESPIR DIS, V145, P990, DOI 10.1164/ajrccm/145.5.990
  24. Neter J., 1996, Applied Linear Statistical Models, V4
  25. Palomba H, 2022, BRAZ J ANESTHESIOL, V72, P688, DOI 10.1016/j.bjane.2022.07.006
  26. Pelosi P, 2021, CRIT CARE, V25, DOI 10.1186/s13054-021-03686-3
  27. Puelles VG, 2020, NEW ENGL J MED, V383, P590, DOI [10.1056/NEJMc2011400, 10.1056/NEJMc2013400]
  28. Roch A., 2007, Reanimation, V16, P102, DOI [10.1016/j.reaurg.2006.12.011, DOI 10.1016/J.REAURG.2006.12.011]
  29. Roch A, 2011, ANN INTENSIVE CARE, V1, DOI 10.1186/2110-5820-1-16
  30. Seitz KP, 2020, J INTENSIVE CARE, V8, DOI 10.1186/s40560-020-00496-7
  31. Shapiro NI, 2023, NEW ENGL J MED, V388, P499, DOI 10.1056/NEJMoa2212663
  32. Silva JM, 2021, CLINICS, V76, DOI 10.6061/clinics/2021/e3368
  33. Silversides JA, 2017, INTENS CARE MED, V43, P155, DOI 10.1007/s00134-016-4573-3
  34. SIMMONS RS, 1987, AM REV RESPIR DIS, V135, P924, DOI 10.1164/arrd.1987.135.4.924
  35. Stein A, 2012, CRIT CARE, V16, DOI 10.1186/cc11368
  36. Subramanian S, 2008, INTENS CARE MED, V34, P157, DOI 10.1007/s00134-007-0862-1
  37. van Mourik N, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224563
  38. Vincent JL, 1996, INTENS CARE MED, V22, P707, DOI 10.1007/BF01709751
  39. von Elm E, 2007, PLOS MED, V4, P1623, DOI [10.1371/journal.pmed.0040296, 10.1371/journal.pmed.0040297]
  40. Wang HE, 2013, OBESITY, V21, pE762, DOI 10.1002/oby.20468
  41. Wang WJ, 2020, J INFECT DIS, V222, P1444, DOI 10.1093/infdis/jiaa387
  42. Wang YH, 2021, J THORAC DIS, V13, P2486, DOI 10.21037/jtd-21-492
  43. Wiedemann HP, 2006, NEW ENGL J MED, V354, P2564
  44. Wiegers EJA, 2021, LANCET NEUROL, V20, P627, DOI 10.1016/S1474-4422(21)00162-9
  45. Yoo MS, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.6105
  46. Zheng BY, 2000, STAT MED, V19, P1265, DOI 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U
  47. Zhu N, 2020, NEW ENGL J MED, V382, P727, DOI 10.1056/NEJMoa2001017