Mechanisms of resistance to CAR-T cell immunotherapy: Insights from a mathematical model

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
SANTURIO, Daniela Silva
PAIXAO, Emanuelle A.
ALMEIDA, Regina C.
FASSONI, Artur C.
Citação
APPLIED MATHEMATICAL MODELLING, v.125, p.1-15, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chimeric Antigen Receptor (CAR)-T cell therapy long-term follow-up studies revealed nondurable remissions in a significant number of patients. Some of the mechanisms underlying these relapses include poor CAR T cell cytotoxicity or persistence, as well as antigen loss or lineage switching in tumor cells. In order to investigate how antigen-mediated resistance mechanisms affect therapy outcomes, we develop a mathematical model based on a set of integral-partial differential equations. Using a continuous variable to describe the level of antigen expression of tumor cells, we recapitulated important cellular mechanisms across patients with different therapeutic responses. Fitted with clinical data, the model successfully captured the dynamics of tumor and CAR-T cells for several hematological cancers. Furthermore, the role played by these mechanisms are explored with regard to different biological scenarios, such as pre-existing or aquired mutations, providing a deeper understanding of key factors underlying resistance to CAR-T cell immunotherapy.
Palavras-chave
Antigen density, CAR-T therapy, Antigen-positive relapse, Antigen-negative relapse, Mutation, Temporary antigen loss
Referências
  1. Alvarez-Arenas A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45863-z
  2. Barros LRC, 2021, CANCERS, V13, DOI 10.3390/cancers13122941
  3. Barros LRC, 2022, CANCERS, V14, DOI 10.3390/cancers14112667
  4. Benmebarek MR, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20061283
  5. Brudno JN, 2016, J CLIN ONCOL, V34, P1112, DOI 10.1200/JCO.2015.64.5929
  6. Cess CG, 2020, J THEOR BIOL, V489, DOI 10.1016/j.jtbi.2019.110125
  7. Chaudhury A, 2020, J CLIN PHARMACOL, V60, pS147, DOI 10.1002/jcph.1691
  8. de Pillis LG, 2005, CANCER RES, V65, P7950, DOI 10.1158/0008-5472.CAN-05-0564
  9. Fowler NH, 2022, NAT MED, V28, P325, DOI 10.1038/s41591-021-01622-0
  10. Fry TJ, 2018, NAT MED, V24, P20, DOI 10.1038/nm.4441
  11. Gardner R, 2016, BLOOD, V127, P2406, DOI 10.1182/blood-2015-08-665547
  12. Gauthier J, 2021, BLOOD, V137, P323, DOI 10.1182/blood.2020006770
  13. George P, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2019-034629
  14. Greene J, 2014, B MATH BIOL, V76, P627, DOI 10.1007/s11538-014-9936-8
  15. Grupp SA, 2013, NEW ENGL J MED, V368, P1509, DOI 10.1056/NEJMoa1215134
  16. Hamieh M, 2019, NATURE, V568, P112, DOI 10.1038/s41586-019-1054-1
  17. Hardiansyah D, 2019, CTS-CLIN TRANSL SCI, V12, P343, DOI 10.1111/cts.12636
  18. Kast J, 2022, CTS-CLIN TRANSL SCI, V15, P2057, DOI 10.1111/cts.13349
  19. Kimmel GJ, 2019, bioRxiv, DOI [10.1101/717074, /10.1101/717074, DOI 10.1101/717074, 10.1101/717074]
  20. Kochenderfer JN, 2013, BLOOD, V122, P4129, DOI 10.1182/blood-2013-08-519413
  21. Koneru M, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0460-x
  22. Lemoine J, 2021, J HEMATOL ONCOL, V14, DOI 10.1186/s13045-021-01209-9
  23. León-Triana O, 2021, COMMUN NONLINEAR SCI, V94, DOI 10.1016/j.cnsns.2020.105570
  24. Li Runpeng, 2023, Immunoinformatics (Amst), V9, DOI 10.1016/j.immuno.2023.100022
  25. Li SQ, 2018, BRIT J HAEMATOL, V181, P360, DOI 10.1111/bjh.15195
  26. Liu LA, 2022, J IMMUNOTHER CANCER, V10, DOI 10.1136/jitc-2022-005360
  27. Lorenzi T, 2016, BIOL DIRECT, V11, DOI 10.1186/s13062-016-0143-4
  28. Ma FT, 2019, HEMATOL ONCOL, V37, P601, DOI 10.1002/hon.2672
  29. Majzner RG, 2020, CANCER DISCOV, V10, P702, DOI 10.1158/2159-8290.CD-19-0945
  30. Martin T, 2022, LANCET HAEMATOL, V9, pE897, DOI 10.1016/S2352-3026(22)00284-8
  31. Mostolizadeh R, 2018, NUMER ALGEBR CONTROL, V8, P63, DOI 10.3934/naco.2018004
  32. Nerreter T, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10948-w
  33. Nukala U, 2021, AAPS J, V23, DOI 10.1208/s12248-021-00579-9
  34. Orlando EJ, 2018, NAT MED, V24, P1504, DOI 10.1038/s41591-018-0146-z
  35. Owens K, 2021, B MATH BIOL, V83, DOI 10.1007/s11538-021-00869-5
  36. Paixao EA, 2022, CANCERS, V14, DOI 10.3390/cancers14225576
  37. Porter DL, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aac5415
  38. Qi TMY, 2022, ADV DRUG DELIVER REV, V188, DOI 10.1016/j.addr.2022.114421
  39. Raje N, 2019, NEW ENGL J MED, V380, P1726, DOI 10.1056/NEJMoa1817226
  40. Rosenblum MD, 2016, NAT REV IMMUNOL, V16, P90, DOI 10.1038/nri.2015.1
  41. Sahoo P, 2020, J R SOC INTERFACE, V17, DOI 10.1098/rsif.2019.0734
  42. Santurio D.S., 2022, Front. Syst. Biol., V2, P18, DOI [10.3389/fsysb.2022.923085, DOI 10.3389/FSYSB.2022.923085]
  43. Shah B, 2016, ANN ONCOL, V27, DOI 10.1093/annonc/mdw368.58
  44. Shah NN, 2019, NAT REV CLIN ONCOL, V16, P372, DOI 10.1038/s41571-019-0184-6
  45. Singh AP, 2020, MABS-AUSTIN, V12, DOI 10.1080/19420862.2019.1688616
  46. Sotillo E, 2015, CANCER DISCOV, V5, P1282, DOI 10.1158/2159-8290.CD-15-1020
  47. Stein AM, 2019, CPT-PHARMACOMET SYST, V8, P285, DOI 10.1002/psp4.12388
  48. Summers C, 2018, BLOOD, V132, DOI 10.1182/blood-2018-99-115599
  49. Swanson ER, 2022, B MATH BIOL, V84, DOI 10.1007/s11538-022-01015-5
  50. Wang XL, 2016, BLOOD, V127, P2980, DOI 10.1182/blood-2015-12-686725
  51. Wierda WG, 2000, BLOOD, V96, P2917
  52. Xu XJ, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02664