Evaluation of oxidative stress in an experimental model of Crohn's disease treated with hyperbaric oxygen therapy

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ESPANA
Citação
CLINICS, v.78, article ID 100305, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Treatments of Inflammatory Bowel Disease (IBD) are able to control symptoms in most cases, how-ever, a fraction of patients do not improve or have a loss of response to treatments, making it important to explore new therapeutic strategies. Hyperbaric oxygen therapy (HBO) may represent one of them. The aim of this study was to evaluate the effects of HBO therapy in an experimental model of IBD. Methods: Sixty male BALBc mice were divided into six groups. Group 1 was colitis-induced with trinitrobenzene sulfonic acid (TNBS) + ethanol, group 2 received TNBS + ethanol plus HBO, group 3 received only ethanol, group 4 received ethanol plus HBO, group 5 received saline solution, and group 6 received saline solution plus HBO. HBO was performed for four days, subsequently, the mice were evaluated daily. At the end of the study, samples from the intestine were collected for histological analysis as well as for measurement of antioxidant enzymes and cytokine levels. Results: HBO significantly improved the clinical and histological status of the animals. Treatment with HBO increased the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in all of the groups; moreover, the difference was only significant between the TNBS and TNBS + HBO groups and treatments promoted a reduction in the proinflammatory cytokines IFN-gamma, IL-12, IL-17 and TNF-alpha and increased the anti-inflammatory cytokines IL-4 and IL-10, with no changes in IL-13. Conclusion: HBO effectively treats TNBS-induced colitis by increasing the activity of antioxidant enzymes and modulating cytokine profiles.
Palavras-chave
Inflammatory bowel disease, Experimental model, Hyperbaric oxygen therapy
Referências
  1. Bannaga AS, 2015, CLIN EXP GASTROENTER, V8, P111, DOI 10.2147/CEG.S57982
  2. Danese S, 2013, ALIMENT PHARM THER, V37, P855, DOI 10.1111/apt.12284
  3. Drenjancevic I, 2013, UNDERSEA HYPERBAR M, V40, P319
  4. Eder P, 2015, CURR PROTEIN PEPT SC, V16, P249, DOI 10.2174/1389203716666150224150756
  5. Eskes A, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008059.pub3
  6. Fujino S, 2003, GUT, V52, P65, DOI 10.1136/gut.52.1.65
  7. García-Bayona L, 2020, P NATL ACAD SCI USA, V117, P24484, DOI 10.1073/pnas.2009556117
  8. Gonzalez CG, 2022, CELL MOL GASTROENTER, V14, P35, DOI 10.1016/j.jcmgh.2022.03.008
  9. Goyette P, 2007, ANN MED, V39, P177, DOI 10.1080/07853890701197615
  10. Gulec B, 2004, PHYSIOL RES, V53, P493, DOI 10.33549/physiolres.930416
  11. Guven A, 2009, J PEDIATR SURG, V44, P534, DOI 10.1016/j.jpedsurg.2008.06.008
  12. Harlan NP, 2022, INFLAMM BOWEL DIS, V28, P1474, DOI 10.1093/ibd/izac141
  13. Hueber W, 2012, GUT, V61, P1693, DOI 10.1136/gutjnl-2011-301668
  14. Kobayashi T, 2008, GUT, V57, P1682, DOI 10.1136/gut.2007.135053
  15. Kotlarz D, 2012, GASTROENTEROLOGY, V143, P347, DOI 10.1053/j.gastro.2012.04.045
  16. MELISSINOS KG, 1981, NEPHRON, V28, P76, DOI 10.1159/000182115
  17. Memar MY, 2019, BIOMED PHARMACOTHER, V109, P440, DOI 10.1016/j.biopha.2018.10.142
  18. Musch E, 2005, CLIN GASTROENTEROL H, V3, P581, DOI 10.1016/S1542-3565(05)00208-9
  19. Neurath MF, 2012, GUT, V61, P1619, DOI 10.1136/gutjnl-2012-302830
  20. Novak S, 2016, MEDIAT INFLAMM, V2016, DOI 10.1155/2016/7141430
  21. PAGLIA DE, 1967, J LAB CLIN MED, V70, P158
  22. Perse M, 2012, J BIOMED BIOTECHNOL, DOI 10.1155/2012/718617
  23. Pouillon L, 2016, EXPERT OPIN BIOL TH, V16, P1277, DOI 10.1080/14712598.2016.1203897
  24. Reinisch W, 2006, GUT, V55, P1138, DOI 10.1136/gut.2005.079434
  25. Risques RA, 2006, CURR OPIN GASTROEN, V22, P382, DOI 10.1097/01.mog.0000231812.95525.a7
  26. Roda G, 2016, CLIN TRANSL GASTROEN, V7, DOI 10.1038/ctg.2015.63
  27. Rothfuss A, 1998, CARCINOGENESIS, V19, P1913, DOI 10.1093/carcin/19.11.1913
  28. Saez A, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24021526
  29. Scheinin T, 2003, CLIN EXP IMMUNOL, V133, P38, DOI 10.1046/j.1365-2249.2003.02193.x
  30. Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034
  31. Simms LA, 2008, GUT, V57, P903, DOI 10.1136/gut.2007.142588
  32. STOCKS J, 1974, CLIN SCI MOL MED, V47, P215, DOI 10.1042/cs0470215
  33. Sunkari VG, 2015, WOUND REPAIR REGEN, V23, P98, DOI 10.1111/wrr.12253
  34. Tuk B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108533
  35. Turner JR, 2006, AM J PATHOL, V169, P1901, DOI 10.2353/ajpath.2006.060681
  36. VANDULLEMEN HM, 1995, GASTROENTEROLOGY, V109, P129, DOI 10.1016/0016-5085(95)90277-5
  37. Wehkamp J, 2005, P NATL ACAD SCI USA, V102, P18129, DOI 10.1073/pnas.0505256102
  38. Wirtz S, 2007, NAT PROTOC, V2, P541, DOI 10.1038/nprot.2007.41
  39. Yang Z, 2006, DIGEST DIS SCI, V51, P1426, DOI 10.1007/s10620-006-9088-2