The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
RODRIGUES, Eder Anderson
ROSA, Camila Moreno
CAMPOS, Dijon Henrique Salome
DAMATTO, Felipe Cesar
SOUZA, Lidiane Moreira
PAGAN, Luana Urbano
GATTO, Mariana
BROSLER, Jessica Yumi
SOUZA, Hebreia Oliveira Almeida
Citação
DIABETOLOGY & METABOLIC SYNDROME, v.15, n.1, article ID 223, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundSodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established.ObjectiveTo evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM.MethodsMale Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. Statistical analysis: ANOVA and Tukey or Kruskal-Wallis and Dunn.ResultsDM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM.ConclusionLong-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.
Palavras-chave
SGLT2 inhibitors, Streptozotocin, Papillary muscle, Ventricular function, Myocardial metabolomics, Echocardiogram
Referências
  1. ALP PR, 1976, BIOCHEM J, V154, P689, DOI 10.1042/bj1540689
  2. Anker SD, 2021, NEW ENGL J MED, V385, P1451, DOI 10.1056/NEJMoa2107038
  3. Aragón-Herrera A, 2019, BIOCHEM PHARMACOL, V170, DOI 10.1016/j.bcp.2019.113677
  4. Baartscheer A, 2017, DIABETOLOGIA, V60, P568, DOI 10.1007/s00125-016-4134-x
  5. Bae JH, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-49525-y
  6. Bamba R, 2022, J CACHEXIA SARCOPENI, V13, P574, DOI 10.1002/jcsm.12814
  7. Braunwald E, 2022, NEW ENGL J MED, V386, P2024, DOI 10.1056/NEJMra2115011
  8. Braunwald E, 2022, EUR HEART J, V43, P1029, DOI 10.1093/eurheartj/ehab765
  9. CARDENAS JM, 1973, J BIOL CHEM, V248, P6931
  10. Carpentier AC, 2018, CAN J CARDIOL, V34, P605, DOI 10.1016/j.cjca.2017.12.029
  11. Carvalho RF, 2006, INT J EXP PATHOL, V87, P437, DOI 10.1111/j.1365-2613.2006.00497.x
  12. Cezar MDM, 2013, CELL PHYSIOL BIOCHEM, V32, P1275, DOI 10.1159/000354526
  13. Cicogna AC, 2000, AM J MED SCI, V320, P244, DOI 10.1097/00000441-200010000-00004
  14. Cowie MR, 2020, NAT REV CARDIOL, V17, P761, DOI 10.1038/s41569-020-0406-8
  15. CRABTREE B, 1972, BIOCHEM J, V126, P49, DOI 10.1042/bj1260049
  16. Dai C, 2023, ESC HEART FAIL, V10, P578, DOI 10.1002/ehf2.14169
  17. Dasari D, 2023, EUR J PHARMACOL, V949, DOI 10.1016/j.ejphar.2023.175720
  18. Dillmann WH, 2019, CIRC RES, V124, P1160, DOI 10.1161/CIRCRESAHA.118.314665
  19. Edwards K, 2022, J CLIN ENDOCR METAB, DOI 10.1210/clinem/dgac618
  20. Farias RS, 2023, EUR J PHARMACOL, V942, DOI 10.1016/j.ejphar.2023.175521
  21. Gholam MF, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24021408
  22. Gillard P, 2020, DIABETES RES CLIN PR, V170, DOI 10.1016/j.diabres.2020.108462
  23. Gimenes C, 2015, J DIABETES RES, V2015, DOI 10.1155/2015/457848
  24. Gimenes R, 2018, CARDIOVASC DIABETOL, V17, DOI 10.1186/s12933-017-0657-9
  25. Guimaraes JFC, 2015, CARDIOVASC DIABETOL, V14, DOI 10.1186/s12933-015-0255-7
  26. Hamouda NN, 2015, MOL CELL BIOCHEM, V400, P57, DOI 10.1007/s11010-014-2262-5
  27. Heerspink HJL, 2016, CIRCULATION, V134, P752, DOI 10.1161/CIRCULATIONAHA.116.021887
  28. HENGARTNER H, 1975, FEBS LETT, V55, P282, DOI 10.1016/0014-5793(75)81012-X
  29. Hughes MS, 2022, DIABETES OBES METAB, V24, P171, DOI 10.1111/dom.14556
  30. Hundertmark MJ, 2023, CIRCULATION, V147, P1654, DOI 10.1161/CIRCULATIONAHA.122.062021
  31. Jankauskas SS, 2021, METABOLISM, V125, DOI 10.1016/j.metabol.2021.154910
  32. Liu HY, 2022, CURR DIABETES REP, V22, P317, DOI 10.1007/s11892-022-01471-2
  33. Liu J, 2023, FRONT CARDIOVASC MED, V10, DOI 10.3389/fcvm.2023.1109946
  34. Long JZ, 2016, CELL, V166, P424, DOI 10.1016/j.cell.2016.05.071
  35. Madonna R, 2023, CARDIOVASC RES, V119, P1175, DOI 10.1093/cvr/cvad009
  36. MAKINO N, 1987, AM J PHYSIOL, V253, pE202, DOI 10.1152/ajpendo.1987.253.2.E202
  37. Martinez PF, 2015, CELL PHYSIOL BIOCHEM, V35, P148, DOI 10.1159/000369683
  38. Matsubara LS, 1997, CAN J PHYSIOL PHARM, V75, P1328, DOI 10.1139/cjpp-75-12-1328
  39. Mengstie MA, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.947294
  40. Minicucci MF, 2011, INT J CARDIOL, V151, P242, DOI 10.1016/j.ijcard.2011.06.068
  41. Noordali H, 2018, PHARMACOL THERAPEUT, V182, P95, DOI 10.1016/j.pharmthera.2017.08.001
  42. Okoshi K, 2019, BMC CARDIOVASC DISOR, V19, DOI 10.1186/s12872-019-1113-4
  43. Okoshi K, 2004, JPN HEART J, V45, P647, DOI 10.1536/jhj.45.647
  44. Okoshi MP, 2001, CAN J PHYSIOL PHARM, V79, P754, DOI 10.1139/cjpp-79-9-754
  45. Pagan LU, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11020336
  46. Pagan LU, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.675778
  47. Phang RJ, 2023, CARDIOVASC RES, V119, P668, DOI 10.1093/cvr/cvac049
  48. Prandi FR, 2023, HEART FAIL REV, V28, P597, DOI 10.1007/s10741-021-10200-y
  49. Rao LW, 2021, ACTA DIABETOL, V58, P869, DOI 10.1007/s00592-021-01686-x
  50. Reyes DRA, 2019, J CELL MOL MED, V23, P1235, DOI 10.1111/jcmm.14025
  51. Reyes DRA, 2017, CELL PHYSIOL BIOCHEM, V44, P2310, DOI 10.1159/000486115
  52. Rodrigues EA, 2023, ANTIOXIDANTS-BASEL, V12, DOI 10.3390/antiox12040896
  53. Rosa CM, 2016, CARDIOVASC DIABETOL, V15, DOI 10.1186/s12933-016-0442-1
  54. Rosa CM, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11050982
  55. Salah HM, 2022, J CARDIOVASC TRANSL, V15, P944, DOI 10.1007/s12265-022-10220-5
  56. Salvatore T, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9101356
  57. Santos-Gallego CG, 2019, J AM COLL CARDIOL, V73, P1931, DOI 10.1016/j.jacc.2019.01.056
  58. Sanz RL, 2023, CURR HYPERTENS REP, V25, P91, DOI 10.1007/s11906-023-01240-w
  59. Seufert J, 2022, DIABETES OBES METAB, V24, P742, DOI 10.1111/dom.14620
  60. Solomon SD, 2022, NEW ENGL J MED, DOI 10.1056/NEJMoa2206286
  61. Sowton AP, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00639
  62. Sugizaki M, 2005, J BIOMED SCI, V12, P641, DOI 10.1007/s11373-005-7652-y
  63. Tsao CW, 2023, CIRCULATION, V147, pE93, DOI 10.1161/CIR.0000000000001123
  64. Uthman L, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01575
  65. Verma S, 2018, DIABETOLOGIA, V61, P2108, DOI 10.1007/s00125-018-4670-7
  66. Wang CC, 2022, J DRUG TARGET, V30, P858, DOI 10.1080/1061186X.2022.2064479
  67. Wiviott SD, 2019, NEW ENGL J MED, V380, P347, DOI [10.1056/NEJMoa1812389, 10.1056/NEJMc1902837]
  68. Yurista SR, 2019, EUR J HEART FAIL, V21, P862, DOI 10.1002/ejhf.1473
  69. Zhang YZ, 2021, CARDIOVASC DIABETOL, V20, DOI 10.1186/s12933-021-01312-8
  70. Zinman B, 2016, NEW ENGL J MED, V374, P1094, DOI 10.1056/NEJMc1600827