Effects of early exercise on cardiac function and lipid metabolism pathway in heart failure

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
SOUZA, Sergio Luiz Borges de
MOTA, Gustavo Augusto Ferreira
SILVA, Vitor Loureiro da
VILEIGAS, Danielle Fernandes
SANT'ANA, Paula Grippa
GREGOLIN, Cristina Schmitt
FIGUEIRA, Rebeca Lopes
BATAH, Sabrina Setembre
FABRO, Alexandre Todorovic
Citação
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, v.27, n.19, p.2956-2969, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.
Palavras-chave
angiogenesis, aortic stenosis, fatty acid oxidation, physical exercise, pressure overload, SIRT1
Referências
  1. Arany Z, 2006, P NATL ACAD SCI USA, V103, P10086, DOI 10.1073/pnas.0603615103
  2. Aubert G, 2016, CIRCULATION, V133, P698, DOI 10.1161/CIRCULATIONAHA.115.017355
  3. Barger PM, 1999, AM J MED SCI, V318, P36, DOI 10.1097/00000441-199907000-00006
  4. Batista DF., 2020, OXID MED CELL LONGEV, V2020, P1
  5. Bedi KC, 2016, CIRCULATION, V133, P706, DOI 10.1161/CIRCULATIONAHA.115.017545
  6. Benjamin, 2020, CIRCULATION, V141, pE33, DOI 10.1161/CIR.0000000000000746
  7. Bernardo BC, 2016, CARDIOL CLIN, V34, P515, DOI 10.1016/j.ccl.2016.06.002
  8. BIEBER LL, 1972, ANAL BIOCHEM, V50, P509, DOI 10.1016/0003-2697(72)90061-9
  9. de Souza SLB, 2021, J CARDIOVASC TRANSL, V14, P674, DOI 10.1007/s12265-020-09997-0
  10. Bregagnollo EA, 2007, INT J CARDIOL, V117, P109, DOI 10.1016/j.ijcard.2006.06.006
  11. Brown MD, 2003, EXP PHYSIOL, V88, P645, DOI 10.1113/eph8802618
  12. Bugger H, 2010, CARDIOVASC RES, V85, P376, DOI 10.1093/cvr/cvp344
  13. Vieira WHD, 2018, LASER MED SCI, V33, P803, DOI 10.1007/s10103-017-2424-2
  14. de Souza Sergio Luiz Borges, 2020, Cell Physiol Biochem, V54, P665, DOI 10.33594/000000247
  15. De Tomasi LC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193553
  16. Dobrzyn P, 2013, AM J PHYSIOL-ENDOC M, V304, pE1348, DOI 10.1152/ajpendo.00603.2012
  17. Doenst T, 2013, CIRC RES, V113, P709, DOI 10.1161/CIRCRESAHA.113.300376
  18. Doenst T, 2010, CARDIOVASC RES, V86, P461, DOI 10.1093/cvr/cvp414
  19. Duncan JG, 2008, PPAR RES, V2008, DOI 10.1155/2008/253817
  20. Gogiraju R, 2015, J AM HEART ASSOC, V4, DOI 10.1161/JAHA.115.001770
  21. Gómez-Marcos MA, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/9124676
  22. Hein S, 2003, CIRCULATION, V107, P984, DOI 10.1161/01.CIR.0000051865.66123.B7
  23. Holloway TM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121138
  24. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  25. Ingwall JS, 2006, CURR HYPERTENS REP, V8, P457, DOI 10.1007/s11906-006-0023-x
  26. Izumiya Y, 2006, HYPERTENSION, V47, P887, DOI 10.1161/01.HYP.0000215207.54689.31
  27. Kolwicz SC, 2018, FRONT CARDIOVASC MED, V5, DOI 10.3389/fcvm.2018.00066
  28. Lachance D, 2014, BMC CARDIOVASC DISOR, V14, DOI 10.1186/1471-2261-14-190
  29. LaPier TLK, 2001, PHYS THER, V81, P1006, DOI 10.1093/ptj/81.4.1006
  30. Miyachi M, 2009, HYPERTENSION, V53, P701, DOI 10.1161/HYPERTENSIONAHA.108.127290
  31. Moraes-Teixeira JD, 2010, EXP MOL PATHOL, V89, P351, DOI 10.1016/j.yexmp.2010.08.004
  32. Mota Gustavo Augusto Ferreira, 2020, Cell Physiol Biochem, V54, P719, DOI 10.33594/000000251
  33. Nakamura M, 2018, NAT REV CARDIOL, V15, P387, DOI 10.1038/s41569-018-0007-y
  34. Neubauer S, 2007, NEW ENGL J MED, V356, P1140, DOI 10.1056/NEJMra063052
  35. Niemi H, 2014, EUR J CLIN INVEST, V44, P989, DOI 10.1111/eci.12333
  36. Oka S, 2015, CIRC-HEART FAIL, V8, P1123, DOI 10.1161/CIRCHEARTFAILURE.115.002216
  37. Oka S, 2011, CELL METAB, V14, P598, DOI 10.1016/j.cmet.2011.10.001
  38. Oka T, 2014, CIRC RES, V114, P565, DOI 10.1161/CIRCRESAHA.114.300507
  39. Osorio JC, 2002, CIRCULATION, V106, P606, DOI 10.1161/01.CIR.0000023531.22727.C1
  40. Pagan LU, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.675778
  41. Pagan LU, 2015, CELL PHYSIOL BIOCHEM, V36, P61, DOI 10.1159/000374053
  42. Ponikowski P, 2016, EUR HEART J, V37, P2129, DOI 10.1093/eurheartj/ehw128
  43. Reyes DRA, 2019, J CELL MOL MED, V23, P1235, DOI 10.1111/jcmm.14025
  44. Rohde LEP, 2018, Arq Bras Cardiol, V111, P436, DOI [10.5935/abc.20180190, DOI 10.5935/ABC.20180190]
  45. de Campos DHS, 2014, ARQ BRAS CARDIOL, V103, P330, DOI 10.5935/abc.20140135
  46. Sant'Ana PG, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24076201
  47. Sant'Ana Paula Grippa, 2018, Pathophysiology, V25, P373, DOI 10.1016/j.pathophys.2018.07.001
  48. Shangguan RA, 2023, MOL BIOL REP, DOI 10.1007/s11033-022-08205-3
  49. Shiojima I, 2005, J CLIN INVEST, V115, P2108, DOI 10.1172/JCI24682
  50. Silva MG, 2022, BIOLOGY-BASEL, V11, DOI 10.3390/biology11121750
  51. Smeets PJH, 2008, PHYSIOL GENOMICS, V36, P15, DOI 10.1152/physiolgenomics.90296.2008
  52. Souza RWA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110020
  53. Stolen T, 2020, SCAND CARDIOVASC J, V54, P84, DOI 10.1080/14017431.2019.1658893
  54. Strom CC, 2005, FEBS J, V272, P2684, DOI 10.1111/j.1742-4658.2005.04684.x
  55. de Souza PAT, 2015, HISTOL HISTOPATHOL, V30, P801, DOI 10.14670/HH-11-581
  56. Vileigas DF, 2021, J NUTR BIOCHEM, V92, DOI 10.1016/j.jnutbio.2021.108625
  57. Warren JS, 2017, AM J PHYSIOL-HEART C, V313, pH584, DOI 10.1152/ajpheart.00103.2017
  58. Weeks KL, 2012, CIRC-HEART FAIL, V5, P523, DOI 10.1161/CIRCHEARTFAILURE.112.966622
  59. White FC, 1998, J APPL PHYSIOL, V85, P1160, DOI 10.1152/jappl.1998.85.3.1160
  60. Wisloff U, 2007, CIRCULATION, V115, P3086, DOI 10.1161/CIRCULATIONAHA.106.675041