Study of laser fluorescence spectroscopy in livers of rats with hypothermic ischemia

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACTA CIRURGICA BRASILEIRA
Citação
ACTA CIRURGICA BRASILEIRA, v.38, article ID e386023, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: After partial hepatectomy (PH), the remaining liver (RL) undergoes regenerative response proportional to the host. Limited literature exists on hepatic viability after tissue injury during hypothermic preservation. Spectroscopy measures cellular fluorescence and is explored for tissue characterization and parameter investigation. This study aimed to assess fluorescence analysis (spectroscopy) in evaluating liver viability and its relationship with hepatic tissue regeneration 24 hours after PH. Additionally, we analyzed liver regeneration in RL after 70% partial hepatectomy under hypothermic conditions with laser irradiation. Methods: Fifty-six Wistar rats were divided into four groups: total non-perfused liver (control), total perfused liver, partial hepatectomy ""in situ"", and partial hepatectomy ""ex situ"". Tissue analysis was performed at 0 and 24 hours using spectroscopy with laser devices emitting at 532 (green) and 405 nm (violet). Results: Spectroscopy identified tissue viability based on consistent results with Ki67 staining. The fluorescence spectra and Ki67 analysis displayed similar patterns, linking proliferative activity and absorption intensity. Conclusion: Fluorescence spectroscopy proves to be promising for real-time analysis of cellular activity and viability. Metabolic activity was observed in groups of live animals and hypothermically preserved samples, indicating cellular function even under blood deprivation and hypothermic conditions.
Palavras-chave
Liver, Spectrum Analysis, Fluorescence, Ischemia, Lasers, Hepatectomy
Referências
  1. Godoy YPA, 2017, ABCD-ARQ BRAS CIR DI, V30, P122, DOI 10.1590/0102-6720201700020010
  2. Araújo TG, 2018, J LASERS MED SCI, V9, P223, DOI 10.15171/jlms.2018.40
  3. Bai J, 2021, STEM CELL RES THER, V12, DOI 10.1186/s13287-021-02493-5
  4. Barbosa AJ, 2011, ACTA CIR BRAS, V26, P470, DOI 10.1590/S0102-86502011000600011
  5. Brandel V, 2022, J HEPATOL, V77, P1619, DOI 10.1016/j.jhep.2022.07.027
  6. Castro-E-Silva O, 2008, TRANSPL P, V40, P722, DOI 10.1016/j.transproceed.2008.03.005
  7. Castro-e-Silva O, 2003, LASER SURG MED, V32, P50, DOI 10.1002/lsm.10141
  8. Croce AC, 2014, EUR J HISTOCHEM, V58, P320, DOI 10.4081/ejh.2014.2461
  9. Croce AC, 2005, PHOTOCH PHOTOBIO SCI, V4, P583, DOI 10.1039/b503586d
  10. Croce AC, 2021, Photochem, V1, P67, DOI [10.3390/photochem1020007, DOI 10.3390/PHOTOCHEM1020007]
  11. Croce AC, 2022, Photochem, V2, P1, DOI [10.3390/photochem2010001, DOI 10.3390/PHOTOCHEM2010001]
  12. Croce AC, 2022, MOLECULES, V27, DOI 10.3390/molecules27144458
  13. Croce AC, 2007, PHOTOCH PHOTOBIO SCI, V6, P1202, DOI 10.1039/b707309g
  14. Dramicanin T, 2016, Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, DOI [10.5772/63534, DOI 10.5772/63534]
  15. Fuller BJ, 2013, CRYOLETTERS, V34, P432
  16. He XS, 2018, AM J TRANSPLANT, V18, P737, DOI 10.1111/ajt.14583
  17. Henriques Aguida Cristina Gomes, 2010, Rev Col Bras Cir, V37, P295
  18. Higgins GM, 1931, ARCH PATHOL, V12, P186
  19. Hosseini V, 2019, J TRANSL MED, V17, DOI 10.1186/s12967-019-02137-6
  20. Iismaa SE, 2018, NPJ REGEN MED, V3, DOI 10.1038/s41536-018-0044-5
  21. Kalil CLPV, 2017, Surg Cosmet Dermatol, V9, P9, DOI [10.5935/scd1984-8773.201791967, DOI 10.5935/SCD1984-8773.201791967]
  22. Kelley K, 2003, PSYCHOL METHODS, V8, P305, DOI 10.1037/1082-989X.8.3.305
  23. Kwasny M, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22082956
  24. Lu YC, 2013, P I MECH ENG H, V227, P293, DOI 10.1177/0954411912468558
  25. Michaelian K, 2015, BIOGEOSCIENCES, V12, P4913, DOI 10.5194/bg-12-4913-2015
  26. MICHALOPOULOS GK, 1990, FASEB J, V4, P176, DOI 10.1096/fasebj.4.2.2404819
  27. Miller I, 2018, CELL REP, V24, P1105, DOI 10.1016/j.celrep.2018.06.110
  28. Mirabello V, 2018, FRONT CHEM, V6, DOI 10.3389/fchem.2018.00027
  29. Miyaoka Y, 2013, CELL DIV, V8, DOI 10.1186/1747-1028-8-8
  30. Muellerová L, 2022, MICROORGANISMS, V10, DOI 10.3390/microorganisms10061179
  31. Oliveira Alexandre Ferreira, 2006, Acta Cir. Bras., V21, P29, DOI 10.1590/S0102-86502006000700007
  32. Rastogi RP, 2010, J NUCLEIC ACIDS, V2010, DOI 10.4061/2010/592980
  33. Sánchez-Cabús S, 2013, LIVER TRANSPLANT, V19, P174, DOI 10.1002/lt.23558
  34. Selzner M, 2000, HEPATOLOGY, V31, P35, DOI 10.1002/hep.510310108
  35. Silva ODE, 2001, LASER SURG MED, V29, P73, DOI 10.1002/lsm.1089
  36. Tsai JM, 2018, JOVE-J VIS EXP, DOI 10.3791/57302
  37. Uxa S, 2021, CELL DEATH DIFFER, V28, P3357, DOI 10.1038/s41418-021-00823-x
  38. Van Haele M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20092332
  39. Yagi S, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21218414
  40. Zhu Q, 2021, INT J MED SCI, V18, P109, DOI 10.7150/ijms.52980
  41. Zuñiga-Aguilar E, 2022, TRANSL GASTROENT HEP, V7, DOI 10.21037/tgh.2020.02.21