Effect of Low-Dose Progesterone on Glycemic Metabolism, Morphology and Function of Adipose Tissue and Pancreatic Islets in Diet-Induced Obese Female Mice

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
IMR PRESS
Autores
SANTOS, Matheus P.
CAUDURO, Leonardo F. R.
FERREIRA, Marilia Marcondes
VILAS-BOAS, Eloisa Aparecida
PEREIRA, Renata O.
ROGERO, Marcelo Macedo
FIORINO, Patricia
Citação
FRONTIERS IN BIOSCIENCE-LANDMARK, v.28, n.11, article ID 312, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Obesity is a worldwide concern due to its global rapid expansion and remarkable impact on individual's health by predisposing to several other diseases. About twice as many women as men suffer from severe obesity and, in fact, there are stages in a woman's life when weight gain and adiposity can result in greater damage to health. For example, obesity triples the chance of a woman developing gestational diabetes. Many hormones promote the metabolic adaptations of pregnancy, including progesterone, whose role in female obesity is still not well known despite being involved in many physiological and pathological processes. Methods: Here we investigated whether progesterone treatment at low dose can worsen the glucose metabolism and the morpho functional aspects of adipose tissue and pancreas in obese females. Mice were assigned into four groups: normocaloric diet control (NO-CO), high-fat and -fructose diet control (HFF-CO), normocaloric diet plus progesterone (NO-PG) and high-fat and -fructose diet plus progesterone (HFF-PG) for 10 weeks. Infusion of progesterone (0.25 mg/kg/day) was done by osmotic minipump in the last 21 days of protocol. Results: Animals fed a hypercaloric diet exhibited obesity with increased body weight (p < 0.0001), adipocyte hypertrophy (p < 0.0001), hyperglycemia (p = 0.03), and glucose intolerance (p = 0.001). HFF-CO and HFF-PG groups showed lower adiponectin concentration (p < 0.0001) and glucose-stimulated insulin secretion (p = 0.03), without differences in islet size. Progesterone attenuated glucose intolerance in the HFFPG group (p = 0.03), however, did not change morphology or endocrine function of adipose tissue and pancreatic islets. Conclusions: Taken together, our results showed that low dose of progesterone does not worsen the effects of hypercaloric diet in glycemic metabolism, morphology and function of adipose tissue and pancreatic islets in female animals. These results may improve the understanding of the mechanisms underlying the pathogenesis of obesity in women and eventually open new avenues for therapeutic strategies and better comprehension of the interactions between progesterone effects and obesity.
Palavras-chave
obesity, hypercaloric diet, females, progesterone, adipose tissue, pancreatic islets
Referências
  1. Asghar ZA, 2017, AM J PHYSIOL-ENDOC M, V312, pE109, DOI 10.1152/ajpendo.00279.2016
  2. Avgerinos KI, 2019, METABOLISM, V92, P121, DOI 10.1016/j.metabol.2018.11.001
  3. Azeez JM, 2021, AM J CANCER RES, V11, P5214
  4. Azevedo-Martins AK, 2006, TOXICOL IN VITRO, V20, P1106, DOI 10.1016/j.tiv.2006.02.007
  5. Blüher M, 2019, NAT REV ENDOCRINOL, V15, P288, DOI 10.1038/s41574-019-0176-8
  6. BONORA E, 1989, J CLIN ENDOCR METAB, V68, P374, DOI 10.1210/jcem-68-2-374
  7. Boschetti D, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.772914
  8. Castro AVB, 2014, ARQ BRAS ENDOCRINOL, V58, P600
  9. Cerf ME, 2020, METABOLITES, V10, DOI 10.3390/metabo10110452
  10. Constantini Naama W, 2005, Clin Sports Med, V24, pe51, DOI 10.1016/j.csm.2005.01.003
  11. COSTRINI NV, 1971, J CLIN INVEST, V50, P992, DOI 10.1172/JCI106593
  12. Della Corte KW, 2018, NUTRIENTS, V10, DOI 10.3390/nu10050606
  13. Di Renzo GC, 2016, HORM MOL BIOL CLIN I, V27, P35, DOI 10.1515/hmbci-2016-0038
  14. DIGIROLAMO M, 1971, AM J PHYSIOL, V221, P850, DOI 10.1152/ajplegacy.1971.221.3.850
  15. Frederiksen L, 2009, J CLIN ENDOCR METAB, V94, P4010, DOI 10.1210/jc.2009-0980
  16. Gonzalez A, 2013, ENDOCRINOLOGY, V154, P3515, DOI 10.1210/en.2013-1424
  17. Heinonen S, 2014, INT J OBESITY, V38, P1423, DOI 10.1038/ijo.2014.31
  18. HERVEY E, 1967, J ENDOCRINOL, V37, P361, DOI 10.1677/joe.0.0370361
  19. Holmberg E, 2015, PHYSIOL BEHAV, V140, P1, DOI 10.1016/j.physbeh.2014.12.012
  20. HOWELL SL, 1977, DIABETOLOGIA, V13, P579, DOI 10.1007/BF01236310
  21. Ibrahim MM, 2010, OBES REV, V11, P11, DOI 10.1111/j.1467-789X.2009.00623.x
  22. Kahn SE, 2006, NATURE, V444, P840, DOI 10.1038/nature05482
  23. KALKHOFF RK, 1982, AM J OBSTET GYNECOL, V142, P735
  24. Kautzky-Willer A, 2016, ENDOCR REV, V37, P278, DOI 10.1210/er.2015-1137
  25. Kawai T, 2021, AM J PHYSIOL-CELL PH, V320, pC375, DOI 10.1152/ajpcell.00379.2020
  26. Kunju SM, 2019, Journal of Evidence-Based Medicine and Healthcare, V6, P922
  27. LACY PE, 1967, DIABETES, V16, P35, DOI 10.2337/diab.16.1.35
  28. Li FF, 2016, J DIABETES RES, V2016, DOI 10.1155/2016/6924593
  29. Lima TD, 2021, J FOOD BIOCHEM, V45, DOI 10.1111/jfbc.13671
  30. Machado CEP, 2004, Brazilian Journal of Physical Education and Sport, V18, P333
  31. de Oliveira CAM, 2010, ISLETS, V2, P240, DOI 10.4161/isl.2.4.12266
  32. Marcelin G, 2022, ANNU REV PHYSIOL, V84, P135, DOI 10.1146/annurev-physiol-060721-092930
  33. Marinho TD, 2022, BIOCHIMIE, V193, P126, DOI 10.1016/j.biochi.2021.10.017
  34. Maslowska M, 1999, EUR J CLIN INVEST, V29, P679, DOI 10.1046/j.1365-2362.1999.00514.x
  35. Masuyama H, 2011, J MOL ENDOCRINOL, V47, P229, DOI 10.1530/JME-11-0046
  36. Mohan V, 2018, INDIAN J MED RES, V148, P531, DOI 10.4103/ijmr.IJMR_1698_18
  37. Nakamura A, 2018, J DIABETES INVEST, V9, P1106, DOI 10.1111/jdi.12821
  38. Neto G, 2003, Revista Brasileira de Medicina do Esporte, V9, P304, DOI 10.1590/S1517-86922003000500006
  39. Newens KJ, 2016, J HUM NUTR DIET, V29, P225, DOI 10.1111/jhn.12338
  40. Nigro E, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/658913
  41. Nunes VA, 2014, J ENDOCRINOL, V221, P273, DOI 10.1530/JOE-13-0202
  42. Ordóñez P, 2007, EXP PHYSIOL, V92, P241, DOI 10.1113/expphysiol.2006.035006
  43. Parlee SD, 2014, METHOD ENZYMOL, V537, P93, DOI 10.1016/B978-0-12-411619-1.00006-9
  44. Pereira RM, 2017, NUTRIENTS, V9, DOI 10.3390/nu9040405
  45. Petrosino JM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148010
  46. Powell-Wiley TM, 2021, CIRCULATION, V143, pE984, DOI 10.1161/CIR.0000000000000973
  47. REEVES PG, 1993, J NUTR, V123, P1939, DOI 10.1093/jn/123.11.1939
  48. Roat R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086815
  49. Rosen SF, 2017, J NEUROSCI, V37, P9819, DOI 10.1523/JNEUROSCI.2053-17.2017
  50. Saleh J, 2009, EUR J ENDOCRINOL, V160, P301, DOI 10.1530/EJE-08-0784
  51. SHOUPE D, 1993, AM J OBSTET GYNECOL, V168, P1041, DOI 10.1016/0002-9378(93)90335-G
  52. Simják P, 2018, J ENDOCRINOL, V238, pR63, DOI 10.1530/JOE-18-0032
  53. Sitruk-Ware R, 2018, CLIMACTERIC, V21, P315, DOI 10.1080/13697137.2018.1463982
  54. Smith GI, 2014, J CLIN ENDOCR METAB, V99, pE1306, DOI 10.1210/jc.2013-4470
  55. SORENSON RL, 1993, ENDOCRINOLOGY, V133, P2227, DOI 10.1210/en.133.5.2227
  56. Spalding KL, 2008, NATURE, V453, P783, DOI 10.1038/nature06902
  57. Stewart LA, 2021, LANCET, V397, P1183, DOI 10.1016/S0140-6736(21)00217-8
  58. Torre-Villalvazo I, 2018, J CELL BIOCHEM, V119, P5970, DOI 10.1002/jcb.26794
  59. World Health Organization, 2021, Obesity and Overweight
  60. Wu Y, 2009, FERTIL STERIL, V91, P213, DOI 10.1016/j.fertnstert.2007.11.031