Are dogs not susceptible to retroviral infections?

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
CAMPOS, J. H.
LOPES, L. R.
Citação
ANIMAL DISEASES, v.3, n.1, article ID 31, p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Retroviruses have been proven to cause infections and diseases in a series of mammalian hosts but not in dogs. Then, this letter discussed the dog susceptibility to retrovirus infection, encompassing arguments to understand why dogs may have not been infected by retroviruses thus far. The potential resistance of retrovirus in dogs enables this provocative short communication to discuss this question, looking at some evolutive aspects. The lineage of canids has shown, throughout its evolutionary history, a smaller accumulation of retroviruses in canid genomes, classified as endogenous retroviruses. In this context, the genomes of canids seem to offer obstacles, which have been evolutionarily conserved, in the face of retroviral infection.
Palavras-chave
Endogenous retrovirus, Retrovirus, dogs
Referências
  1. Attermann A.S., Bjerregaard A.M., Saini S.K., Gronbaek K., Hadrup S.R., Human endogenous retroviruses and their implication for immunotherapeutics of cancer, Annals of Oncology, 29, 11, pp. 2183-2191, (2018)
  2. Barrio A.M., Ekjerlund M., Sperber G.O., Blomberg J., Bongcam-Rudloff E., Andersson G., In silico analysis of the dog genome identifies Canine Endogenous Retroviruses (CfERVs), Retrovirology, 6, 2, (2009)
  3. Blikstad V., Benachenhou F., Sperber G.O., Blomberg J., Endogenous retroviruses, Cellular and Molecular Life Sciences, 65, 21, pp. 3348-3365, (2008)
  4. Butler M.D., Griffin K., Brewster C.D., Kapuscinski M.L., Stenglein M.D., Tripp D.W., Et al., A Novel Retrovirus (Gunnison’s Prairie Dog Retrovirus) Associated with thymic lymphoma in Gunnison’s prairie dogs in Colorado, USA, Viruses, 12, 6, (2020)
  5. Buttler C.A., Chuong E.B., Emerging roles for endogenous retroviruses in immune epigenetic regulation, Immunological Reviews, 305, 1, pp. 165-178, (2022)
  6. Ghernati I., Auger C., Chabanne L., Corbin A., Bonnefont C., Magnol J.P., Et al., Characterization of a canine long-term T-cell line (DLC 01) established from a dog with Sézary syndrome and producing retroviral particles, Leukemia, 13, 8, pp. 1281-1290, (1999)
  7. Greger M., The human/animal interface: Emergence and resurgence of zoonotic infectious diseases, Critical Reviews in Microbiology, 33, 4, pp. 243-299, (2007)
  8. Hartmann K., Clinical aspects of feline immunodeficiency and feline leukemia virus infection, Veterinary Immunology and Immunopathology, 143, 3-4, pp. 190-201, (2011)
  9. Hartmann K., Clinical aspects of feline retroviruses: A review, Viruses, 4, 11, pp. 2684-2710, (2012)
  10. Hong Y., Hu C.B., Bai J., Fan D.D., Lin A.F., Xiang L.X., Et al., Essential role of an ERV-derived Env38 protein in adaptive humoral immunity against an exogenous SVCV infection in a zebrafish model, PLoS Pathogens, 19, 4, (2023)
  11. Jones D.T., Taylor W.R., Thornton J.M., The rapid generation of mutation data matrices from protein sequences, Computer Applications in the Biosciences, 8, 3, pp. 275-282, (1992)
  12. Kassiotis G., Endogenous Retroviruses and the Development of Cancer, The Journal of Immunology., 192, 4, pp. 1343-1349, (2014)
  13. Kumar S., Stecher G., Li M., Knyaz C., Tamura K., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms, Molecular Biology and Evolution, 35, 6, pp. 1547-1549, (2018)
  14. Kurth R., Bannert N., Beneficial and detrimental effects of human endogenous retroviruses, International Journal of Cancer., 126, 2, pp. 306-314, (2010)
  15. Lee A., Nolan A., Watson J., Tristem M., Identification of an ancient endogenous retrovirus, predating the divergence of the placental mammals, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 1626, (2013)
  16. Llorens C., Futami R., Covelli L., Dominguez-Escriba L., Viu J.M., Tamarit D., Et al., The Gypsy Database (GyDB) of mobile genetic elements: release 2.0, Nucleic Acids Research, 39, Database issue, pp. D70-D74, (2011)
  17. Marsden C.D., Ortega-Del Vecchyo D., O'Brien D.P., Taylor J.F., Ramirez O., Vila C., Et al., Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs, Proceedings of the National Academy of Sciences of the United States of America, 113, 1, pp. 152-157, (2016)
  18. McEwan W.A., Schaller T., Ylinen L.M., Hosie M.J., Towers G.J., Willett B.J., Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat, Journal of Virology, 83, 16, pp. 8270-8275, (2009)
  19. Modiano J.F., Getzy D.M., Akol K.G., Van Winkle T.J., Cockerell G.L., Retrovirus-like activity in an immunosuppressed dog: Pathological and immunological findings, Journal of Comparative Pathology, 112, 2, pp. 165-183, (1995)
  20. Narushima R., Horiuchi N., Usui T., Ogawa T., Takahashi T., Shimazaki T., Experimental infection of dogs with a feline endogenous retrovirus RD-114, Acta Veterinaria Scandinavica, 53, 1, (2011)
  21. Nisole S., Saib A., Early steps of retrovirus replicative cycle, Retrovirology, 1, (2004)
  22. O'Brien S.J., Moore J.P., The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS, Immunological Reviews, 177, pp. 99-111, (2000)
  23. Pagani I., Poli G., Vicenzi E., TRIM22. A multitasking antiviral factor, Cells, 10, 8, (2021)
  24. Plassais J., Kim J., Davis B.W., Karyadi D.M., Hogan A.N., Harris A.C., Et al., Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology, Nature Communications, 10, 1, (2019)
  25. Riggs J.L., McAllister R.M., Lennette E.H., Immunofluorescent Studies of RD-114 Virus Replication in Cell Culture, Journal of General Virology., 25, 1, pp. 21-29, (1974)
  26. Russ E., Iordanskiy S., Endogenous Retroviruses as Modulators of Innate Immunity, Pathogens., 12, 2, (2023)
  27. Safran N., Perk K., Eyal O., Dahlberg J.E., Isolation and preliminary characterization of a novel retrovirus isolated from a leukemic dog, Research in Veterinary Science, 52, 2, pp. 250-255, (1992)
  28. Sawyer S.L., Emerman M., Malik H.S., Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals, PLoS Pathog, 3, 12, (2007)
  29. Schuening F., Storb R., Nash R., Stead R.B., Kwok W.W., Miller A.D., Retroviral transfer of genes into canine hematopoietic progenitor cells, Advances in Experimental Medicine and Biology, 241, pp. 9-18, (1988)
  30. Singh S.K., Endogenous retroviruses: Suspects in the disease world, Future Microbiology, 2, 3, pp. 269-275, (2007)
  31. Stremlau M., Owens C.M., Perron M.J., Kiessling M., Autissier P., Sodroski J., The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys, Nature, 427, 6977, pp. 848-853, (2004)
  32. Tarlinton R.E., Barfoot H.K.R., Allen C.E., Brown K., Gifford R.J., Emes R.D., Characterization of a group of endogenous gammaretroviruses in the canine genome, The Veterinary Journal, 196, 1, pp. 28-33, (2013)
  33. Vogel P., The current molecular phylogeny of Eutherian mammals challenges previous interpretations of placental evolution, Placenta, 26, 8, pp. 591-596, (2005)
  34. Wong-Staal F., Gallo R.C., Human T-lymphotropic retroviruses, Nature, 317, 6036, pp. 395-403, (1985)