Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
BOCCACINO, Jacqueline Marcia
PEIXOTO, Rafael dos Santos
FERNANDES, Camila Felix de Lima
CANGIANO, Giovanni
COELHO, Barbara Paranhos
PRADO, Mariana Brandao
MELO-ESCOBAR, Maria Isabel
SOUSA, Breno Pereira de
AYYADHURY, Shamini
Citação
BMC CANCER, v.24, n.1, article ID 199, 17p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundGlioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive.MethodsTo elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings.ResultsFunctional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells.ConclusionsTogether, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.
Palavras-chave
Glioblastoma, Transcriptomics, Prion protein, Intracellular trafficking, Vesicle dynamics
Referências
  1. Alves RN, 2020, Int J Mol Sci, V21, P1
  2. Becker A, 2016, CANCER CELL, V30, P836, DOI 10.1016/j.ccell.2016.10.009
  3. Castle AR, 2017, FRONT MOL BIOSCI, V4, DOI 10.3389/fmolb.2017.00019
  4. Chen DH, 2017, ONCOL REP, V38, P1533, DOI 10.3892/or.2017.5843
  5. Chen R, 2022, J CELL MOL MED, V26, P4343, DOI 10.1111/jcmm.17458
  6. Coitinho AS, 2006, EUR J NEUROSCI, V24, P3255, DOI 10.1111/j.1460-9568.2006.05156.x
  7. Corsaro A, 2016, ONCOTARGET, V7, P38638, DOI 10.18632/oncotarget.9575
  8. da Rocha EL, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03214-y
  9. Darmanis S, 2017, CELL REP, V21, P1399, DOI 10.1016/j.celrep.2017.10.030
  10. Dias MVS, 2016, AUTOPHAGY, V12, P2113, DOI 10.1080/15548627.2016.1226735
  11. Ding MQ, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.742949
  12. Fernandes CFD, 2023, SEMIN CELL DEV BIOL, V133, P32, DOI 10.1016/j.semcdb.2022.05.027
  13. Hänzelmann S, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-7
  14. Hartmann A, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00194
  15. Hatoum A, 2019, CANCER MANAG RES, V11, P1843, DOI 10.2147/CMAR.S186142
  16. Iglesia RP, 2022, FRONT CELL DEV BIOL, V10, DOI 10.3389/fcell.2022.907423
  17. Iglesia RP, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0518-1
  18. Kaffes I, 2019, ONCOIMMUNOLOGY, V8, DOI 10.1080/2162402X.2019.1655360
  19. Lakomy R, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.00840
  20. Lebreton S, 2018, CRIT REV BIOCHEM MOL, V53, P403, DOI 10.1080/10409238.2018.1485627
  21. Li CCY, 2013, RNA BIOL, V10, P1333, DOI 10.4161/rna.25281
  22. Lima FRS, 2007, J NEUROCHEM, V103, P2164, DOI 10.1111/j.1471-4159.2007.04904.x
  23. Linden R, 2017, FRONT MOL NEUROSCI, V10, DOI 10.3389/fnmol.2017.00077
  24. Liu L, 2020, CLIN CHIM ACTA, V509, P36, DOI 10.1016/j.cca.2020.05.048
  25. Liu SH, 2014, INT J CLIN EXP PATHO, V7, P4857
  26. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  27. Longo SK, 2021, NAT REV GENET, V22, P627, DOI 10.1038/s41576-021-00370-8
  28. Lopes MH, 2015, ONCOGENE, V34, P3305, DOI 10.1038/onc.2014.261
  29. Lopes MH, 2005, J NEUROSCI, V25, P11330, DOI 10.1523/JNEUROSCI.2313-05.2005
  30. Louis DN, 2021, NEURO-ONCOLOGY, V23, P1231, DOI 10.1093/neuonc/noab106
  31. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  32. Ma CK, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23052770
  33. Mehrpour M, 2010, CANCER LETT, V290, P1, DOI 10.1016/j.canlet.2009.07.009
  34. Merico D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013984
  35. Neftel C, 2019, CELL, V178, P835, DOI 10.1016/j.cell.2019.06.024
  36. Oh S, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17139-y
  37. Ou A, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010351
  38. Pan YY, 2016, MOL NEUROBIOL, V53, P4431, DOI 10.1007/s12035-015-9378-9
  39. Prado MB, 2020, Int J Mol Sci, V21, P1
  40. Richards LM, 2021, NAT CANCER, V2, DOI 10.1038/s43018-020-00154-9
  41. Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616
  42. Robinson SW, 2014, HUM MOL GENET, V23, P4581, DOI 10.1093/hmg/ddu171
  43. Rogers MA, 2020, SCI ADV, V6, DOI 10.1126/sciadv.abb1244
  44. Russo MN, 2023, MOL ASPECTS MED, V91, DOI 10.1016/j.mam.2022.101167
  45. Schuh M, 2011, NAT CELL BIOL, V13, P1431, DOI 10.1038/ncb2353
  46. Sidaway P, 2017, NAT REV CLIN ONCOL, V14, P587, DOI [10.1038/nrclinonc.2017.90, 10.1038/nrclinonc.2017.122, 10.1038/nrclinonc.2017.132]
  47. Skog J, 2008, NAT CELL BIOL, V10, P1470, DOI 10.1038/ncb1800
  48. Sneeggen M, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.597608
  49. Song YD, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.01482
  50. Stupp R, 2005, NEW ENGL J MED, V352, P987, DOI 10.1056/NEJMoa043330
  51. Suo JH, 2024, FEBS OPEN BIO, V14, P138, DOI 10.1002/2211-5463.13736
  52. Tabb JS, 1998, J CELL SCI, V111, P3221
  53. Thomas PD, 2022, PROTEIN SCI, V31, P8, DOI 10.1002/pro.4218
  54. Vader P, 2014, TRENDS MOL MED, V20, P385, DOI 10.1016/j.molmed.2014.03.002
  55. Verdoni AM, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002701
  56. Wang QH, 2017, CANCER CELL, V32, P42, DOI 10.1016/j.ccell.2017.06.003
  57. Wang XS, 2022, CELL DEATH DIS, V13, DOI 10.1038/s41419-022-04699-8
  58. Wei DH, 2021, CELL RES, V31, P157, DOI 10.1038/s41422-020-00409-1
  59. Wesseling P, 2018, NEUROPATH APPL NEURO, V44, P139, DOI 10.1111/nan.12432
  60. Xu R, 2018, NAT REV CLIN ONCOL, V15, P617, DOI 10.1038/s41571-018-0036-9
  61. Yang XW, 2014, ACTA BIOCH BIOPH SIN, V46, P431, DOI 10.1093/abbs/gmu019
  62. Yekula A, 2020, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.03137
  63. York HM, 2020, BIOCHEM SOC T, V48, P2051, DOI 10.1042/BST20200223
  64. Yun CW, 2021, CANCERS, V13, DOI 10.3390/cancers13092144
  65. Zanata SM, 2002, EMBO J, V21, P3307, DOI 10.1093/emboj/cdf325
  66. Zhang DD, 2022, FRONT GENET, V13, DOI 10.3389/fgene.2022.851505