Alzheimer's disease brain-derived extracellular vesicles reveal altered synapse-related proteome and induce cognitive impairment in mice

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
BODART-SANTOS, Victor
PINHEIRO, Lisandra S.
SILVA-JUNIOR, Almir J. da
FROZA, Rudimar L.
AHRENS, Rosemary
GONCALVES, Rafaella A.
ANDRADE, Mayara M.
CHEN, Yan
ALCANTARA, Carolina de Lima
Citação
ALZHEIMERS & DEMENTIA, v.19, n.12, p.5418-5436, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
INTRODUCTIONExtracellular vesicles (EVs) have been implicated in the spread of neuropathology in Alzheimer's disease (AD), but their involvement in behavioral outcomes linked to AD remains to be determined. METHODSEVs isolated from post mortem brain tissue from control, AD, or frontotemporal dementia (FTD) donors, as well as from APP/PS1 mice, were injected into the hippocampi of wild-type (WT) or a humanized Tau mouse model (hTau/mTauKO). Memory tests were carried out. Differentially expressed proteins in EVs were assessed by proteomics. RESULTSBoth AD-EVs and APP/PS1-EVs trigger memory impairment in WT mice. We further demonstrate that AD-EVs and FTD-EVs carry Tau protein, present altered protein composition associated with synapse regulation and transmission, and trigger memory impairment in hTau/mTauKO mice. DISCUSSIONResults demonstrate that AD-EVs and FTD-EVs have negative impacts on memory in mice and suggest that, in addition to spreading pathology, EVs may contribute to memory impairment in AD and FTD. HighlightsA beta was detected in EVs from post mortem AD brain tissue and APP/PS1 mice.Tau was enriched in EVs from post mortem AD, PSP and FTD brain tissue.AD-derived EVs and APP/PS1-EVs induce cognitive impairment in wild-type (WT) mice.AD- and FTD-derived EVs induce cognitive impairment in humanized Tau mice.Proteomics findings associate EVs with synapse dysregulation in tauopathies.
Palavras-chave
Alzheimer's disease, brain-derived EVs, extracellular vesicles, proteomics, tauopathies
Referências
  1. Asai H, 2015, NAT NEUROSCI, V18, P1584, DOI 10.1038/nn.4132
  2. Attar A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080355
  3. Baker S, 2016, J ALZHEIMERS DIS, V54, P1207, DOI 10.3233/JAD-160371
  4. Ballatore C, 2007, NAT REV NEUROSCI, V8, P663, DOI 10.1038/nrn2194
  5. Braak H, 1997, NEUROBIOL AGING, V18, pS85, DOI 10.1016/S0197-4580(97)00062-6
  6. BRAAK H, 1991, ACTA NEUROPATHOL, V82, P239, DOI 10.1007/BF00308809
  7. Braak H, 2006, ACTA NEUROPATHOL, V112, P389, DOI 10.1007/s00401-006-0127-z
  8. Chen EY, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-128
  9. Dinkins MB, 2015, J ALZHEIMERS DIS, V46, P55, DOI 10.3233/JAD-150088
  10. Dinkins MB, 2014, NEUROBIOL AGING, V35, P1792, DOI 10.1016/j.neurobiolaging.2014.02.012
  11. Eitan E, 2016, NPJ AGING MECH DIS, V2, DOI 10.1038/npjamd.2016.19
  12. Emmanouilidou E, 2010, J NEUROSCI, V30, P6838, DOI 10.1523/JNEUROSCI.5699-09.2010
  13. Fá M, 2016, SCI REP-UK, V6, DOI 10.1038/srep19393
  14. Ferreira ST, 2011, NEUROBIOL LEARN MEM, V96, P529, DOI 10.1016/j.nlm.2011.08.003
  15. Fevrier B, 2004, P NATL ACAD SCI USA, V101, P9683, DOI 10.1073/pnas.0308413101
  16. Fiandaca MS, 2015, ALZHEIMERS DEMENT, V11, P600, DOI 10.1016/j.jalz.2014.06.008
  17. GLENNER GG, 1984, BIOCHEM BIOPH RES CO, V120, P885, DOI 10.1016/S0006-291X(84)80190-4
  18. Goetzl EJ, 2018, FASEB J, V32, P888, DOI 10.1096/fj.201700731R
  19. Goetzl EJ, 2016, FASEB J, V30, P4141, DOI 10.1096/fj.201600816R
  20. Goetzl EJ, 2016, FASEB J, V30, P3853, DOI 10.1096/fj.201600756R
  21. Goetzl EJ, 2015, NEUROLOGY, V85, P40, DOI 10.1212/WNL.0000000000001702
  22. Graykowski David R, 2020, iScience, V23, P101456, DOI 10.1016/j.isci.2020.101456
  23. Guix FX, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030663
  24. Heneka MT, 2015, LANCET NEUROL, V14, P388, DOI 10.1016/S1474-4422(15)70016-5
  25. Horowitz AM, 2020, SCIENCE, V369, P167, DOI 10.1126/science.aaw2622
  26. Jankowsky JL, 2004, HUM MOL GENET, V13, P159, DOI 10.1093/hmg/ddh019
  27. Jankowsky JL, 2001, BIOMOL ENG, V17, P157, DOI 10.1016/S1389-0344(01)00067-3
  28. Jeppesen DK, 2019, CELL, V177, P428, DOI 10.1016/j.cell.2019.02.029
  29. Johnson ECB, 2022, NAT NEUROSCI, V25, P213, DOI 10.1038/s41593-021-00999-y
  30. Kanmert D, 2015, J NEUROSCI, V35, P10851, DOI 10.1523/JNEUROSCI.0387-15.2015
  31. Kapogiannis D, 2015, FASEB J, V29, P589, DOI 10.1096/fj.14-262048
  32. Krieger JR, 2019, J PROTEOME RES, V18, P2346, DOI 10.1021/acs.jproteome.9b00082
  33. Kuleshov MV, 2016, NUCLEIC ACIDS RES, V44, pW90, DOI 10.1093/nar/gkw377
  34. Lachenal G, 2011, MOL CELL NEUROSCI, V46, P409, DOI 10.1016/j.mcn.2010.11.004
  35. Lourenco MV, 2019, NAT MED, V25, P165, DOI 10.1038/s41591-018-0275-4
  36. Muraoka S, 2020, ALZHEIMERS DEMENT, V16, P896, DOI 10.1002/alz.12089
  37. Ngolab J, 2017, ACTA NEUROPATHOL COM, V5, DOI 10.1186/s40478-017-0445-5
  38. Peng C, 2020, NAT REV NEUROL, V16, P199, DOI 10.1038/s41582-020-0333-7
  39. Pérez M, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00698
  40. Pérez-González R, 2020, FASEB J, V34, P12922, DOI 10.1096/fj.202000823R
  41. Perez-Gonzalez R, 2012, J BIOL CHEM, V287, P43108, DOI 10.1074/jbc.M112.404467
  42. Polanco JC, 2016, J BIOL CHEM, V291, P12445, DOI 10.1074/jbc.M115.709485
  43. Rajendran L, 2006, P NATL ACAD SCI USA, V103, P11172, DOI 10.1073/pnas.0603838103
  44. Rajendrana L, 2007, NEURODEGENER DIS, V4, P164, DOI 10.1159/000101841
  45. Ruan Z, 2021, BRAIN, V144, P288, DOI 10.1093/brain/awaa376
  46. Saito T, 2019, J BIOL CHEM, V294, P12754, DOI 10.1074/jbc.RA119.009487
  47. Saman S, 2012, J BIOL CHEM, V287, P3842, DOI 10.1074/jbc.M111.277061
  48. Schiera G, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010266
  49. Sinha MS, 2018, ACTA NEUROPATHOL, V136, P41, DOI 10.1007/s00401-018-1868-1
  50. Spivak M, 2009, J PROTEOME RES, V8, P3737, DOI 10.1021/pr801109k
  51. Théry C, 2018, J EXTRACELL VESICLES, V7, DOI 10.1080/20013078.2018.1535750
  52. Villeda SA, 2014, NAT MED, V20, P659, DOI 10.1038/nm.3569
  53. Vingtdeux V, 2007, J BIOL CHEM, V282, P18197, DOI 10.1074/jbc.M609475200
  54. Wang Y, 2017, MOL NEURODEGENER, V12, DOI [10.1186/s13024-016-0143-y, 10.1007/s12293-017-0248-z]
  55. Wei ZX, 2020, NEUROPSYCHOPHARMACOL, V45, P1050, DOI 10.1038/s41386-020-0622-2
  56. Wijesekara N, 2018, FASEB J, V32, P3166, DOI 10.1096/fj.201701352
  57. Xia XH, 2022, AGEING RES REV, V74, DOI 10.1016/j.arr.2021.101558
  58. Yamazaki T, 1996, J CELL SCI, V109, P999
  59. You Y, 2022, J EXTRACELL VESICLES, V11, DOI 10.1002/jev2.12183
  60. Zhang Y, 2016, NEURON, V89, P37, DOI 10.1016/j.neuron.2015.11.013
  61. Zhou YY, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09234-6