Ultra-processed foods, adiposity and risk of head and neck cancer and oesophageal adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition study: a mediation analysis

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
MORALES-BERSTEIN, Fernanda
BIESSY, Carine
VIALLON, Vivian
GONCALVES-SOARES, Ana
CASAGRANDE, Corinne
HEMON, Bertrand
KLIEMANN, Nathalie
CAIRAT, Manon
LOPEZ, Jessica Blanco
NAHAS, Aline Al
Citação
EUROPEAN JOURNAL OF NUTRITION, v.63, n.2, p.377-396, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PurposeTo investigate the role of adiposity in the associations between ultra-processed food (UPF) consumption and head and neck cancer (HNC) and oesophageal adenocarcinoma (OAC) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.MethodsOur study included 450,111 EPIC participants. We used Cox regressions to investigate the associations between the consumption of UPFs and HNC and OAC risk. A mediation analysis was performed to assess the role of body mass index (BMI) and waist-to-hip ratio (WHR) in these associations. In sensitivity analyses, we investigated accidental death as a negative control outcome.ResultsDuring a mean follow-up of 14.13 +/- 3.98 years, 910 and 215 participants developed HNC and OAC, respectively. A 10% g/d higher consumption of UPFs was associated with an increased risk of HNC (hazard ratio [HR] = 1.23, 95% confidence interval [CI] 1.14-1.34) and OAC (HR = 1.24, 95% CI 1.05-1.47). WHR mediated 5% (95% CI 3-10%) of the association between the consumption of UPFs and HNC risk, while BMI and WHR, respectively, mediated 13% (95% CI 6-53%) and 15% (95% CI 8-72%) of the association between the consumption of UPFs and OAC risk. UPF consumption was positively associated with accidental death in the negative control analysis.ConclusionsWe reaffirmed that higher UPF consumption is associated with greater risk of HNC and OAC in EPIC. The proportion mediated via adiposity was small. Further research is required to investigate other mechanisms that may be at play (if there is indeed any causal effect of UPF consumption on these cancers).
Palavras-chave
Epidemiology, Food processing, NOVA classification, Oesophageal cancer, Head and neck cancer, Adiposity, Mediation analysis
Referências
  1. [Anonymous], 2008, WAIST CIRCUMFERENCE, DOI 10.1038/EJCN.2009.139
  2. Baker P, 2020, OBES REV, V21, DOI 10.1111/obr.13126
  3. Bingham S, 2004, NAT REV CANCER, V4, P206, DOI 10.1038/nrc1298
  4. Boccia S, 2009, CANCER EPIDEM BIOMAR, V18, P248, DOI 10.1158/1055-9965.EPI-08-0462
  5. Chang KR, 2023, ECLINICALMEDICINE, V56, DOI 10.1016/j.eclinm.2023.101840
  6. Chazelas E, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-98496-6
  7. Chazelas E, 2019, BMJ-BRIT MED J, V366, DOI 10.1136/bmj.l2408
  8. Cordova R, 2021, CLIN NUTR, V40, P5079, DOI 10.1016/j.clnu.2021.08.009
  9. Debras C, 2022, PLOS MED, V19, DOI 10.1371/journal.pmed.1003950
  10. Dicken SJ, 2022, NUTRIENTS, V14, DOI 10.3390/nu14010023
  11. Du X, 2017, BIOSCIENCE REP, V37, DOI [10.1042/bsr20160474, 10.1042/BSR20160474]
  12. El Kinany K, 2022, EUR J NUTR, V61, P2507, DOI 10.1007/s00394-022-02820-3
  13. Elliott JA, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.627270
  14. Fardet A, 2016, FOOD FUNCT, V7, P2338, DOI [10.1039/c6fo00107f, 10.1039/C6FO00107F]
  15. Fewell Z, 2007, AM J EPIDEMIOL, V166, P646, DOI 10.1093/aje/kwm165
  16. Fiolet T, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.k322
  17. Freedman ND, 2011, GUT, V60, P1029, DOI 10.1136/gut.2010.233866
  18. Gaudet MM, 2015, INT J EPIDEMIOL, V44, P673, DOI 10.1093/ije/dyv059
  19. Gormley M, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19822-6
  20. Goyal N, 2023, ORAL DIS, V29, P1565, DOI 10.1111/odi.14196
  21. Haftenberger M, 2002, PUBLIC HEALTH NUTR, V5, P1147, DOI 10.1079/PHN2002396
  22. Hashibe M, 2007, J NATL CANCER I, V99, P777, DOI 10.1093/jnci/djk179
  23. Hashibe M, 2009, CANCER EPIDEM BIOMAR, V18, P541, DOI 10.1158/1055-9965.EPI-08-0347
  24. Hoyo C, 2012, INT J EPIDEMIOL, V41, P1706, DOI 10.1093/ije/dys176
  25. Huybrechts I, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.1035580
  26. Kliemann N, 2023, LANCET PLANET HEALTH, V7, pE219, DOI 10.1016/S2542-5196(23)00021-9
  27. Kroke A, 1999, AM J CLIN NUTR, V70, P439
  28. Lin YL, 2015, CANCER CAUSE CONTROL, V26, P1825, DOI 10.1007/s10552-015-0675-4
  29. Lipsitch M, 2010, EPIDEMIOLOGY, V21, P383, DOI 10.1097/EDE.0b013e3181d61eeb
  30. Margetts BM, 1997, INT J EPIDEMIOL, V26, pS1, DOI 10.1093/ije/26.suppl_1.S1
  31. Marino M, 2021, NUTRIENTS, V13, DOI 10.3390/nu13082778
  32. Martinez KB, 2017, GUT MICROBES, V8, P130, DOI 10.1080/19490976.2016.1270811
  33. Marziliano A, 2020, HEAD NECK-J SCI SPEC, V42, P732, DOI 10.1002/hed.26023
  34. Matejcic M, 2017, CARCINOGENESIS, V38, P859, DOI 10.1093/carcin/bgx067
  35. Mebane WR, 2011, J STAT SOFTW, V42, P1
  36. Monteiro C., 2012, World Nutr, V3, P527
  37. Monteiro CA, 2019, PUBLIC HEALTH NUTR, V22, P936, DOI 10.1017/S1368980018003762
  38. Monteiro CA, 2009, PUBLIC HEALTH NUTR, V12, P729, DOI 10.1017/S1368980009005291
  39. Monteiro CA, 2011, PUBLIC HEALTH NUTR, V14, P5, DOI 10.1017/S1368980010003241
  40. Monteiro CA, 2010, CAD SAUDE PUBLICA, V26, P2039, DOI 10.1590/S0102-311X2010001100005
  41. Moradi S, 2022, CRIT REV FOOD SCI, V63, P249, DOI 10.1080/10408398.2021.1946005
  42. O'Doherty MG, 2012, GUT, V61, P1261, DOI 10.1136/gutjnl-2011-300551
  43. Rauber F, 2021, EUR J NUTR, V60, P2169, DOI 10.1007/s00394-020-02367-1
  44. Riboli E, 2002, PUBLIC HEALTH NUTR, V5, P1113, DOI 10.1079/PHN2002394
  45. Riboli E, 1997, INT J EPIDEMIOL, V26, pS6, DOI 10.1093/ije/26.suppl_1.S6
  46. Romaguera D, 2021, CLIN NUTR, V40, P1537, DOI 10.1016/j.clnu.2021.02.033
  47. Rubin DB., 2004, Multiple Imputation for Nonresponse in Surveys, DOI [DOI 10.1002/9780470316696, 10.1002/9780470316696.fmatter]
  48. Sandoval-Insausti H, 2020, NUTRIENTS, V12, DOI 10.3390/nu12082368
  49. Shi BY, 2021, EPIDEMIOLOGY, V32, pE20, DOI 10.1097/EDE.0000000000001378
  50. Slimani N, 2003, CANCER EPIDEM BIOMAR, V12, P784
  51. Slimani N, 2000, EUR J CLIN NUTR, V54, P900, DOI 10.1038/sj.ejcn.1601107
  52. Smith GD, 2020, INT J EPIDEMIOL, V49, P4, DOI 10.1093/ije/dyaa016
  53. Smith GD, 2020, EUR J EPIDEMIOL, V35, P99, DOI 10.1007/s10654-020-00622-7
  54. Rudakoff LCS, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.1006018
  55. Spencer EA, 2002, PUBLIC HEALTH NUTR, V5, P561, DOI 10.1079/PHN2001322
  56. Steffen A, 2015, INT J CANCER, V137, P646, DOI 10.1002/ijc.29432
  57. VanderWeele TJ, 2007, AM J EPIDEMIOL, V166, P1096, DOI 10.1093/aje/kwm179
  58. VanderWeele TJ, 2014, EPIDEMIOLOGY, V25, P749, DOI 10.1097/EDE.0000000000000121
  59. VanderWeele TJ, 2011, EPIDEMIOLOGY, V22, P582, DOI 10.1097/EDE.0b013e31821db37e
  60. Ward HA, 2017, CANCER EPIDEM BIOMAR, V26, P895, DOI 10.1158/1055-9965.EPI-16-0886
  61. Wareham NJ, 2003, PUBLIC HEALTH NUTR, V6, P407, DOI 10.1079/PHN2002439
  62. Weikert C, 2009, INT J CANCER, V125, P406, DOI 10.1002/ijc.24393
  63. Wilson LF, 2019, INT J CANCER, V145, P2944, DOI 10.1002/ijc.32204
  64. World Cancer Research Fund AIfCR, DIET NUTR PHYS ACT C, DOI 10.3945/AJCN.111.018978
  65. Wozniak MB, 2015, INT J CANCER, V137, P1953, DOI 10.1002/ijc.29559
  66. Zinöcker MK, 2018, NUTRIENTS, V10, DOI 10.3390/nu10030365