Total energy expenditure assessed by 24-h whole-room indirect calorimeter in patients with colorectal cancer: baseline findings from the PRIMe study

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
FORD, Katherine L.
PICHARD, Claude
SAWYER, Michael B.
TROTTIER, Claire F.
PURCELL, Sarah A.
GHOSH, Sunita
SIERVO, Mario
DEUTZ, Nicolaas E. P.
PRADO, Carla M.
Citação
AMERICAN JOURNAL OF CLINICAL NUTRITION, v.118, n.2, p.422-432, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Total energy expenditure (TEE) determines energy requirements, but objective data in patients with cancer are limited. Objectives: We aimed to characterize TEE, investigate its predictors, and compare TEE with cancer-specific predicted energy requirements. Methods: This cross-sectional analysis included patients with stages II-IV colorectal cancer from the Protein Recommendation to Increase Muscle (PRIMe) trial. TEE was assessed by 24-h stay in a whole-room indirect calorimeter before dietary intervention and compared with cancer-specific predicted energy requirements (25-30 kcal/kg). Generalized linear models, paired-samples t tests, and Pearson correlation were applied. Results: Thirty-one patients (56 & PLUSMN; 10 y; body mass index [BMI]: 27.9 & PLUSMN; 5.5 kg/m2; 68% male) were included. Absolute TEE was higher in males (mean difference: 391 kcal/d; 95% CI: 167, 616 kcal/d; P < 0.001), patients with colon cancer (mean difference: 279 kcal/d; 95% CI: 73, 485 kcal/d; P = 0.010), and patients with obesity (mean difference: 393 kcal/d; 95% CI: 182, 604 kcal/d; P < 0.001). Appendicular lean soft tissue (fl: 46.72; 95% CI: 34.27, 59.17; P < 0.001) and tumor location (colon-fl: 139.69; 95% CI: 19.44, 259.95; P = 0.023) independently predicted TEE when adjusted for sex. Error between measured TEE and energy requirements predicted by 25 kcal/kg (mean difference: 241 kcal/d; 95% CI: 76, 405 kcal/d; P = 0.010) or 30 kcal/kg (mean difference: 367 kcal/d; 95% CI: 163, 571 kcal/d; P < 0.001) was higher for patients with obesity, and proportional error was observed (25 kcal/kg: r = -0.587; P < 0.001; and 30 kcal/kg: r = -0.751; P < 0.001). TEE (mean difference: 25 kcal/kg; 95% CI: 24, 27 kcal/kg) was below predicted requirements using 30 kcal/kg (-430 & PLUSMN; 322 kcal/d; P < 0.001). Conclusions: This is the largest study to assess TEE of patients with cancer using whole-room indirect calorimeter and highlights the need for improved assessment of energy requirements in this population. Energy requirements predicted using 30 kcal/kg overestimated TEE by 1.44 times in a controlled sedentary environment and TEE was outside of the predicted requirement range for most. Special considerations are warranted when determining TEE of patients with colorectal cancer, such as BMI, body composition, and tumor location. This is a baseline cross-sectional analysis from a clinical trial registered at clinicaltrials.gov as NCT02788955 (https://clinicaltrials.gov/ct2/show/NC T02788955).
Palavras-chave
whole-room indirect calorimetry, whole-body indirect calorimetry, cancer, energy expenditure, energy requirements, body composition
Referências
  1. [Anonymous], 2005, Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids
  2. Arends J, 2017, CLIN NUTR, V36, P11, DOI 10.1016/j.clnu.2016.07.015
  3. Argilés JM, 2016, J AM MED DIR ASSOC, V17, P789, DOI 10.1016/j.jamda.2016.04.019
  4. Baracos VE, 2018, NAT REV DIS PRIMERS, V4, DOI 10.1038/nrdp.2017.105
  5. cancer.gov, 2022, CANC STAG
  6. Carkeet A, 2015, OPTOMETRY VISION SCI, V92, pE71, DOI 10.1097/OPX.0000000000000513
  7. Carneiro IP, 2016, ADV NUTR, V7, P476, DOI 10.3945/an.115.008755
  8. cdc.gov, 2022, AD BMI
  9. Chen KY, 2020, OBESITY, V28, P1613, DOI 10.1002/oby.22928
  10. clinicaltrials.gov, PROT REC INCR MUSCL
  11. Demark-Wahnefried W, 2001, J CLIN ONCOL, V19, P2381, DOI 10.1200/JCO.2001.19.9.2381
  12. Elbelt U, 2010, CLIN NUTR, V29, P766, DOI 10.1016/j.clnu.2010.05.003
  13. Fearon K, 2011, LANCET ONCOL, V12, P489, DOI 10.1016/S1470-2045(10)70218-7
  14. Ford K.L., 2022, BASIC PROTOCOLS FOOD, P265
  15. Ford KL, 2023, J ACAD NUTR DIET, V123, P407, DOI 10.1016/j.jand.2022.08.128
  16. Ford KL, 2021, CLIN NUTR ESPEN, V41, P175, DOI 10.1016/j.clnesp.2020.11.016
  17. Gerke O, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10050334
  18. Gibney E, 1997, METABOLISM, V46, P1412, DOI 10.1016/S0026-0495(97)90140-2
  19. Hall KD, 2012, AM J CLIN NUTR, V95, P989, DOI 10.3945/ajcn.112.036350
  20. Hayes S, 2003, BONE MARROW TRANSPL, V31, P331, DOI 10.1038/sj.bmt.1703867
  21. HEYMSFIELD SB, 1985, CANCER, V55, P238, DOI 10.1002/1097-0142(19850101)55:1+<238::AID-CNCR2820551306>3.0.CO;2-S
  22. Heymsfield SB, 2022, J CACHEXIA SARCOPENI, V13, P1100, DOI 10.1002/jcsm.12959
  23. Hill RJ, 2007, J PEDIATR GASTR NUTR, V45, P342, DOI 10.1097/MPG.0b013e31804a85f2
  24. Human Nutrition Research Unit, US
  25. Levine JA, 2005, PUBLIC HEALTH NUTR, V8, P1123, DOI 10.1079/PHN2005800
  26. Lin JZ, 2016, J CANCER RES CLIN, V142, P2551, DOI 10.1007/s00432-016-2225-1
  27. Melanson EL, 2021, OBESITY, V29, P632, DOI 10.1002/oby.23135
  28. Mo J, 2021, J CANCER SURVIV, V15, P461, DOI 10.1007/s11764-020-00940-5
  29. Moses AWG, 2004, BRIT J CANCER, V90, P996, DOI 10.1038/sj.bjc.6601620
  30. Mourtzakis M, 2008, APPL PHYSIOL NUTR ME, V33, P997, DOI 10.1139/H08-075
  31. Okugawa Y, 2018, JPEN-PARENTER ENTER, V42, P998, DOI 10.1002/jpen.1041
  32. Oliveira CLP, 2021, AM J CLIN NUTR, V113, P476, DOI 10.1093/ajcn/nqaa283
  33. Pagano AP, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19116419
  34. Pereira LCR, 2019, AM J CLIN NUTR, V109, P554, DOI 10.1093/ajcn/nqy312
  35. Purcell SA, 2016, EUR J CLIN NUTR, V70, P1230, DOI 10.1038/ejcn.2016.96
  36. Purcell SA, 2019, NUTR CLIN PRACT, V34, P922, DOI 10.1002/ncp.10374
  37. Purcell SA, 2019, AM J CLIN NUTR, V110, P367, DOI 10.1093/ajcn/nqz112
  38. Purcell SA, 2020, CLIN NUTR, V39, P134, DOI 10.1016/j.clnu.2018.12.038
  39. Sandri M, 2013, INT J BIOCHEM CELL B, V45, P2121, DOI 10.1016/j.biocel.2013.04.023
  40. SCHOELLER DA, 1988, J NUTR, V118, P1278, DOI 10.1093/jn/118.11.1278
  41. Schoffelen PFM, 2018, EUR J APPL PHYSIOL, V118, P33, DOI 10.1007/s00421-017-3735-5
  42. Siegel RL, 2020, CA-CANCER J CLIN, V70, P145, DOI 10.3322/caac.21601
  43. Skipworth RJE, 2011, CLIN NUTR, V30, P812, DOI 10.1016/j.clnu.2011.05.010
  44. Van Soom T, 2020, CLIN NUTR, V39, P1863, DOI 10.1016/j.clnu.2019.07.028
  45. Wang ZM, 2000, AM J PHYSIOL-ENDOC M, V279, pE539, DOI 10.1152/ajpendo.2000.279.3.E539
  46. WEIR JBD, 1949, J PHYSIOL-LONDON, V109, P1, DOI 10.1113/jphysiol.1949.sp004363
  47. Wolf JH, 2020, J SURG RES, V255, P325, DOI 10.1016/j.jss.2020.05.081
  48. Yamano T, 2016, INT J COLORECTAL DIS, V31, P877, DOI 10.1007/s00384-016-2507-8
  49. You YN, 2020, DIS COLON RECTUM, V63, P1191, DOI 10.1097/DCR.0000000000001762